VISION FOR THE GOS IN 2025
(Approved by CBS-XIV and Adopted by EC LXI in June 2009)

PREAMBLE
This Vision provides high-level goals to guide the evolution of the Global Observing System in the coming decades. These goals are intended to be challenging but achievable.

The future GOS will build upon existing sub-systems, both surface- and space-based, and capitalize on existing, new and emerging observing technologies not presently incorporated or fully exploited. Incremental additions to the GOS will be reflected in better data, products and services from the National Meteorological and Hydrological Services (NMHSs); this will be particularly true for developing countries and LDCs.

The future GOS will play a central role within the WMO Integrated Global Observing System (WIGOS)\(^1\). This evolved integrated observing system will be a comprehensive “system of systems” interfaced with WMO co-sponsored and other non-WMO observing systems, making major contributions to the Global Earth Observation System of Systems (GEOSS); and will be delivered through enhanced involvement of WMO Members, Regions and technical commissions. The space-based component will rely on enhanced collaboration through partnerships such as the Coordination Group for Meteorological Satellites (CGMS) and the Committee on Earth Observation Satellites (CEOS). Portions of the surface and space-based sub-systems will rely on WMO partner organizations: the Global Terrestrial Observing System (GTOS), the Global Ocean Observing System (GOOS), the Global Climate Observing System (GCOS), and others.

The scope of these changes to the GOS will be major and will involve new approaches in science, data handling, product development and utilization, and training.

1. GENERAL TRENDS AND ISSUES

Response to user needs

- The GOS will provide comprehensive observations in response to the needs of all WMO Members and Programmes for improved data products and services, for weather, water and climate;
- It will continue to provide effective global collaboration in the making and dissemination of observations, through a composite and increasingly complementary system of observing systems;
- It will provide observations when and where they are needed in a reliable, stable, sustained and cost-effective manner;
- It will routinely respond to user requirements for observations of specified spatial and temporal resolution, accuracy and timeliness; and,
- It will evolve in response to a rapidly changing user and technological environment, based on improved scientific understanding and advances in observational and data-processing technologies.

Integration

- The GOS will have evolved to become part of the WIGOS\(^1\), which will integrate current GOS functionalities, which are intended primarily to support operational weather forecasting, with

\(^{1}\) Assuming WIGOS is adopted at Cg-XVI
those of other applications: climate monitoring, oceanography, atmospheric composition, hydrology, and weather and climate research;

• Integration will be developed through the analysis of requirements and, where appropriate, through sharing observational infrastructure, platforms and sensors, across systems and with WMO Members and other partners;

• Surface and space-based observing systems will be planned in a coordinated manner to cost-effectively serve variety of user needs with appropriate spatial and temporal resolutions.

Expansion

• There will be an expansion in both the user applications served and the variables observed;

• This will include observations to support the production of Essential Climate Variables, adhering to the GCOS climate monitoring principles;

• Sustainability of new components of the GOS will be secured, with some R&D systems integrated as operational systems;

• The range and volume of observations exchanged globally (rather than locally) will be increased;

• Some level of targeted observations will be achieved, whereby additional observations are acquired or usual observations are not acquired, in response to the local meteorological situation.

Automation

• The trend to develop fully automatic observing systems, using new observing and information technologies will continue, where it can be shown to be cost-effective;

• Access to real-time and raw data will be improved;

• Observing system test-beds will be used to intercompare and evaluate new systems and develop guidelines for integration of observing platforms and their implementation; and

• Observational data will be collected and transmitted in digital forms, highly compressed where necessary. Data processing will be highly computerized.

Consistency and homogeneity

• There will be increased standardization of instruments and observing methods;

• There will be improvements in calibration of observations and the provision of metadata, to ensure data consistency and traceability to absolute standards;

• There will be improved methods of quality control and characterization of errors of all observations;

• There will be increased interoperability, between existing observing systems and with newly implemented systems; and,

• There will be improved homogeneity of data formats and dissemination via the WIS.

2. **THE SPACE-BASED COMPONENT**

<table>
<thead>
<tr>
<th>Instruments:</th>
<th>Geophysical variables and phenomena:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational geostationary satellites. At least 6, separated by no more than 70 deg longitude</td>
<td></td>
</tr>
<tr>
<td>High-resolution multi-spectral Vis/IR imagers</td>
<td>Cloud amount, type, top height/temperature; wind (through tracking cloud and water vapour features); sea/land surface temperature; precipitation; aerosols; snow cover; vegetation cover; albedo; atmospheric stability; fires; volcanic ash</td>
</tr>
<tr>
<td>IR hyper-spectral sounders</td>
<td>Atmospheric temperature, humidity; wind (through tracking cloud and water vapour features); rapidly evolving mesoscale features; sea/land surface temperature; cloud amount and top height/temperature; atmospheric composition</td>
</tr>
<tr>
<td>Lightning imagers</td>
<td>Lightning (in particular cloud to cloud), location of intense convection.</td>
</tr>
<tr>
<td>Operational polar-orbiting sun-synchronous satellites distributed within 3 orbital planes (~13:30, 17:30, 21:30 ECT)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>IR hyper-spectral sounders</td>
<td>Atmospheric temperature, humidity and wind; sea/land surface temperature; cloud amount, water content and top height/temperature; atmospheric composition</td>
</tr>
<tr>
<td>MW sounders</td>
<td></td>
</tr>
<tr>
<td>High-resolution multi-spectral Vis/IR imagers (including thermal IR water vapour absorption channel)</td>
<td>Cloud amount, type, top height/temperature; wind (high latitudes, through tracking cloud and water vapour features); sea/land surface temperature; precipitation; aerosols; snow and ice cover; vegetation cover; albedo; atmospheric stability</td>
</tr>
</tbody>
</table>

Additional operational missions in appropriate orbits (classical polar-orbiting, geostationary, others)

MW imagers – at least 3 – some polarimetric	Sea ice; total column water vapour; precipitation; sea surface wind speed [and direction]; cloud liquid water; sea/land surface temperature; soil moisture
Scatterometers - at least 2 on well separated orbital planes	Sea surface wind speed and direction; sea ice; soil moisture
Radio occultation constellation – at least 8 receivers	Atmospheric temperature and humidity; ionospheric electron density
Altimeter constellation including a reference mission in a precise orbit, and polar-orbiting altimeters for global coverage	Ocean surface topography; sea level; ocean wave height; lake levels; sea and land ice topography
IR dual-angle view imager	Sea surface temperature (of climate monitoring quality); aerosols; cloud properties
Narrow-band high-spectral and hyperspectral resolution Vis/NIR imagers	Ocean colour; vegetation (including burnt areas); aerosols; cloud properties; albedo
High-resolution multi-spectral Vis/IR imagers – constellation	Land-surface imaging for land use and vegetation; flood monitoring
Precipitation radars operated in conjunction with passive MW imagers in various orbits	Precipitation (liquid and solid)
Broad-band Vis/IR radiometer + total solar irradiance sensor - at least 1	Earth radiation budget (supported by imagers and sounders on polar-orbiting and geostationary satellites) and collocated aerosols and cloud properties measurements
Atmospheric composition instruments constellation, including high spectral resolution UV sounder on geostationary orbit and at least a UV sounder on am + pm orbit	Ozone; other atmospheric chemical species; aerosols – for greenhouse gas monitoring, ozone/UV monitoring, air quality monitoring
Synthetic aperture radar	Wave heights, directions and spectra; floods; sea ice leads; ice shelf and icebergs

Operational pathfinders and technology demonstrators, including

Doppler wind lidar on LEO	Wind; aerosol; cloud-top height [and base]
Low-frequency MW radiometer on LEO	Ocean surface salinity; soil moisture
MW imager/sounder on GEO	Precipitation; cloud water/ice; atmospheric humidity and temperature
High-resolution, multi-spectral narrow-band Vis/NIR and CCD imagers on GEOs	Ocean colour, cloud studies and disaster monitoring
Vis/IR imagers on satellites in high inclination, highly elliptical orbits (HEO)	Winds and clouds at high latitudes; sea ice; high latitude volcanic ash plumes; snow cover; vegetation; fires
Gravimetric sensors	Water volume in lakes, rivers, ground, etc.

Polar and geo platforms / instruments for space weather

| Solar imagery | Particle detection | Electron density | Solar radiation storms, high-energy particle rain, ionospheric and geomagnetic storms, radio black-out by X-ray photons |

3. THE SURFACE-BASED COMPONENT

<table>
<thead>
<tr>
<th>Station type:</th>
<th>Geophysical variables and phenomena:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land – upper-air</td>
<td>Wind, temperature, humidity, pressure</td>
</tr>
<tr>
<td>Upper-air synoptic and reference stations</td>
<td>Wind, cloud base and top, cloud water, temperature, humidity, aerosols</td>
</tr>
<tr>
<td>Remote sensing upper-air profiling remote stations</td>
<td></td>
</tr>
<tr>
<td>Aircraft</td>
<td>Wind, temperature, pressure, humidity, turbulence, icing, thunderstorms, dust/sandstorms, volcanic ash/activity, and atmospheric composition variables (aerosols, greenhouse gases, ozone, air quality, precipitation chemistry, reactive gases)</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Atmospheric composition stations</td>
<td>Aerosol optical depth, atmospheric composition variables (aerosols, greenhouse gases, ozone, air quality, precipitation chemistry, reactive gases)</td>
</tr>
<tr>
<td>GNSS receiver stations</td>
<td>water vapour</td>
</tr>
</tbody>
</table>

Land – surface

<table>
<thead>
<tr>
<th>Surface synoptic and climate reference stations</th>
<th>Surface pressure, temperature, humidity, wind; visibility; clouds; precipitation; present and past weather; radiation; soil temperature; evaporation; soil moisture; obscurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric composition stations</td>
<td>Atmospheric composition variables (aerosols, greenhouse gases, ozone, air quality, precipitation chemistry, reactive gases)</td>
</tr>
<tr>
<td>Lightning detection system stations</td>
<td>Lightning (location, density, rate of discharge, polarity; volumetric distribution)</td>
</tr>
</tbody>
</table>

Application specific stations (road weather, airport / heliport weather stations, agromet stations, urban meteorology, etc)

| Application specific observations | Application specific observations |

Land – hydrology

<table>
<thead>
<tr>
<th>Hydrological reference stations</th>
<th>Water level</th>
</tr>
</thead>
<tbody>
<tr>
<td>National hydrological network stations</td>
<td>Precipitation, snow depth, snow water content, lake and river ice thickness/date of freezing and break-up, water level, water flow, water quality, soil moisture, soil temperature, sediment loads</td>
</tr>
<tr>
<td>Ground water stations</td>
<td>Ground water measurements</td>
</tr>
</tbody>
</table>

Land – weather radar

| Weather radar station | Precipitation (hydrometeor size distribution, phase, type), wind, humidity (from refractivity), sand and dust storms |

Ocean – upper air

<table>
<thead>
<tr>
<th>Automated Shipboard Aerological Platform (ASAP) ships</th>
<th>Wind, temperature, humidity, pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF Coastal Radars</td>
<td>Surface currents, waves</td>
</tr>
<tr>
<td>Synoptic sea stations (ocean, island, coastal and fixed platform)</td>
<td>Surface pressure, temperature, humidity, wind; visibility; cloud amount, type and base-height; precipitation; weather; sea-surface temperature; wave direction, period and height; sea ice</td>
</tr>
<tr>
<td>Ships</td>
<td>Surface pressure, temperature, humidity, wind; visibility; cloud amount, type and base-height; precipitation; weather; sea-surface temperature; wave direction, period and height; sea ice</td>
</tr>
<tr>
<td>Buoys – moored and drifting</td>
<td>Surface pressure, temperature, humidity, wind; visibility; sea surface temperature; 3D & 2D wave spectrum, wave direction, period and height</td>
</tr>
<tr>
<td>Ice buoys</td>
<td>Surface pressure, temperature, wind, ice thickness</td>
</tr>
<tr>
<td>Tide stations</td>
<td>Sea water height, surface air pressure, wind, salinity, water temperature</td>
</tr>
</tbody>
</table>

Ocean – sub-surface

<table>
<thead>
<tr>
<th>Profiling floats</th>
<th>Temperature, salinity, current, dissolved oxygen, CO₂ concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice tethered platforms</td>
<td>Temperature, salinity, current</td>
</tr>
<tr>
<td>Ships of opportunity</td>
<td>Temperature</td>
</tr>
</tbody>
</table>

R&D and Operational pathfinders – examples

<table>
<thead>
<tr>
<th>UAVs</th>
<th>Wind, temperature, humidity, atmospheric composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gondolas</td>
<td>Wind, temperature, humidity</td>
</tr>
<tr>
<td>GRUAN stations</td>
<td>Reference quality climate variables, cloud structure</td>
</tr>
<tr>
<td>Aircraft</td>
<td>Chemistry, aerosol, wind (lidar)</td>
</tr>
<tr>
<td>Instrumented marine animals</td>
<td>Temperature</td>
</tr>
<tr>
<td>Ocean gliders</td>
<td>Temperature, salinity, current, dissolved oxygen, CO₂ concentration</td>
</tr>
</tbody>
</table>
4. **SYSTEM-SPECIFIC TRENDS AND ISSUES**

4.1 **Space-based**

- There will be an **expanded** space-based observing **capability** both on operational and research satellites;
- There will be an **expanded community** of space agencies contributing to the GOS;
- There will be **increased collaboration** between space agencies, to ensure that a broad spectrum of user requirements for observations are met in the most cost-effective manner, and that system reliability is assured through arrangements for mutual back-up;
- Observational capability demonstrated on **R&D** satellites will be progressively transferred to **operational** platforms, to assure the reliability and sustainability of measurements;
- **R&D satellites** will continue to play an important role in the GOS; although they cannot guarantee continuity of observations, they offer important contributions beyond the current means of operational systems. Partnerships will be developed between agencies to extend the operation of functional **R&D** and other satellites to the maximum useful period;
- Some user requirements will be met through **constellations** of satellite, often involving collaboration between space agencies. Expected constellations include: altimetry, precipitation, radio occultation, atmospheric composition and Earth radiation budget;
- **Higher spatial, temporal and spectral resolution** will considerably enhance the information available, particularly to monitor and predict rapidly-evolving, small-scale phenomena, whilst increasing the demand on data exchange, management and processing capability;
- **Improved availability and timeliness** will be achieved through operational cooperation among agencies and new communications infrastructure;
- **Improved calibration and inter-calibration** will be achieved through mechanisms such as GSICS.

4.2 **Surface-based**

The surface-based GOS will provide:

- Improved detection of meso-scale phenomena;
- Data that cannot be measured by space-based component;
- Data for calibration and validation of space-based data;
- Enhanced data exchange of regional scale observing data and product from weather radar, hydrological networks, etc.;
- High vertical resolution profiles from radiosondes and other ground based remote-sensing systems, integrated with other observations to represent the atmospheric structure;
- Improved data quality with defined standards on availability, accuracy and quality control;
- Long-term datasets for the detection and understanding of environmental trends and changes to complement those derived from space-based systems;
- Maintenance of stations with long historically-uninterrupted observing records.

Radiosondes networks will:

- Be optimized, particularly in terms of horizontal spacing which will increase in data-dense areas, and taking account of observations available from other profiling systems;
- Be complemented by the **aircraft (AMDAR)** ascent/descents profiles and other ground-based profiling systems;
- Maintain the **GUAN** subset of stations for climate monitoring;
- Include a **GCOS Reference Upper-Air Network (GRUAN)** to serve as a reference network for other radiosonde sites, for calibration and validation of satellite records, and for other applications.
Aircraft observing systems

- Will be available from most airport locations, in all regions of the world;
- Flight-level and ascent/descent data will be available at user-selected temporal resolution;
- Will observe humidity and some components of atmospheric composition, in addition to temperature, pressure and wind;
- Will also be developed for smaller, regional aircraft with flight levels in the mid-troposphere and providing ascent/descent profiles into additional airports.

Land-surface observations systems

- Will come from a wider variety of surface networks (e.g., road networks, mobile platforms) and multi-application networks;
- Will be primarily automated and capable of reproducing or substituting for measurements previously obtained subjectively (weather phenomena, cloud type, etc.);
- Will include the **GSN** subset of surface stations for climate monitoring.

Surface marine observations

- From drifting buoys, moored buoys, ice buoys and Voluntary Observing Ships will complement satellite observations;
- With improved temporal resolution and timeliness, through reliable and cost-effective satellite data communication systems;

Ocean sub-surface observing technology will be improved, including cost-effective multi-purpose *in-situ* observing platforms, ocean gliders, and instrumented marine animals.

Remote-Sensing observing systems:

- **Weather radar** systems will provide enhanced precipitation products but with increased data coverage. They will increasingly provide information on other atmospheric variables. There will be much improved data consistency and new radar technology. Collaborative multi-national networks will deliver composite products;
- **Coastal HF Radars** will provide for ocean currents and wave data;
- **Profilers** will be developed and used by more applications. A wider variety of technologies will be used, including lidars, radars and microwave radiometers. These observing systems will be developed into coherent networks and integrated with other surface networks;
- **Global Navigation Satellite System** (e.g., GPS, GLONASS and GALILEO) receiver networks, for observing total column water vapour, will be extended;
- These systems will be integrated into “intelligent” profiling systems and integrated with other surface observing technologies.

Lightning detection systems

- **Long-range lightning detection systems** will provide cost-effective, homogenized, global data with a high location accuracy, significantly improving coverage in data sparse regions including oceanic and polar areas;
- **High-resolution lightning detection systems** with a higher location accuracy, cloud-to-cloud and cloud-to-ground discrimination for special applications.

Surface-based observations of atmospheric composition (complemented by balloon- and aircraft-borne measurements) will contribute to an integrated three-dimensional global atmospheric chemistry measurement network, together with a space-based component. New measurement strategies will be combined to provide near real-time data delivery.

Surface-based observations will support **nowcasting and very short-range forecasting** through the widespread integration of radar, lightning and other detection systems, with extension to continental and global scales of the networks.