CLIK (CLimate Information ToolKit)
http://clik.apcc21.org

7 Dec 2016
Yun-Young Lee
Mission of APCC

to enhance the socio-economic well-being of member economies by utilizing up-to-date scientific knowledge and applying innovative climate prediction techniques through

Climate Prediction
APCC produces value-added, reliable, and real-time climate prediction information and provides the APEC region with it.

Interdisciplinary Research
APCC leads in the development of interdisciplinary research and application techniques at the climate-environment-society nexus.

Climate Information Services
APCC strives to be a key climate database center to distribute climate data, information products, and related tools.

International Cooperation
APCC guides developing countries from the APEC region toward building their own capacity to produce reliable climate prediction information.
CLIK
CLimate Information ToolKit
http://clik.apcc21.org
CLIK (CLimate Information ToolKit) : online prediction tool

For those who wants to play with model data,

- To allow user manipulation of multi-model ensemble prediction in producing his/her own forecast
- MME Prediction with different model combination
- Downscaling: Simulated large scale pattern to station matching
 - To provide statistical downscaling capability using multi model prediction

Output: 3-months mean (seasonal) forecast & verification score
For those **who wants to play with model data,**

- To allow **user manipulation** of multi-model ensemble prediction in producing his/her own forecast

CLIK

Downscaling: Simulated large scale pattern to station matching

- To provide **statistical downscaling** capability using multi model prediction

MME Prediction with different model combination
Why MME?

• Climate predictions have **uncertainty** coming from two major sources,
 – Initial conditions uncertainty (errors in obs. system or estimates)
 – Model formulation uncertainty (errors due to discrete representation of temporally and spatially continuous real world)

 ➔ multi-institutional multi-model ensemble approach to **minimize the uncertainty**

 ➔ multi-model ensemble (MME) approach yields **superior forecasts** compared to any single model.
Collection of Dynamic ensemble seasonal prediction data from NMHS and research institutes (16 operations/institutions from 10 countries)
List of available models

Data Sources

<table>
<thead>
<tr>
<th>Nation</th>
<th>Organization</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Bureau of Meteorology</td>
<td>BoM</td>
</tr>
<tr>
<td>Canada</td>
<td>Meteorological Service of Canada</td>
<td>MSC</td>
</tr>
<tr>
<td>China</td>
<td>National Climate Center, CMA</td>
<td>NCC</td>
</tr>
<tr>
<td></td>
<td>Institute of Atmospheric Physics</td>
<td>IAP</td>
</tr>
<tr>
<td>Chinese Taipei</td>
<td>Central Weather Bureau</td>
<td>CWB</td>
</tr>
<tr>
<td>Italy</td>
<td>Centro Euro-Mediterraneo sui Cambiamenti Climatici</td>
<td>CMCC</td>
</tr>
<tr>
<td>Japan</td>
<td>Japan Meteorological Agency</td>
<td>JMA</td>
</tr>
<tr>
<td></td>
<td>Korea Meteorological Administration</td>
<td>KMA</td>
</tr>
<tr>
<td>Korea</td>
<td>Pusan National University</td>
<td>PNU</td>
</tr>
<tr>
<td></td>
<td>National Institute of Meteorological Research</td>
<td>NIMR</td>
</tr>
<tr>
<td>Peru</td>
<td>Servicio Nacional de Meteorologia e Hidrologia</td>
<td>SENAMHI</td>
</tr>
<tr>
<td>Russia</td>
<td>Hydrometeorological Research Centre of Russian Federation</td>
<td>HMC</td>
</tr>
<tr>
<td></td>
<td>Voeikov Main Geophysical Observatory</td>
<td>MGO</td>
</tr>
<tr>
<td>UK</td>
<td>Met Office</td>
<td>Met Office</td>
</tr>
<tr>
<td></td>
<td>International Research Institute for Climate & Society</td>
<td>IRI</td>
</tr>
<tr>
<td></td>
<td>Center for Ocean-Land-Atmosphere Studies</td>
<td>COLA</td>
</tr>
<tr>
<td>USA</td>
<td>National Centers for Environmental Prediction, NOAA</td>
<td>NCEP</td>
</tr>
<tr>
<td></td>
<td>National Aeronautics and Space Administration</td>
<td>NASA</td>
</tr>
</tbody>
</table>
PREDICTION_methodology

Deterministic

Multi-Model Ensemble (MME)

Probabilistic

SCM

GAUS

Simple Composite Method:
Average of individual forecast with equal weighting

\[P = \frac{1}{M} \sum_{i} F_i \]

A parametric Gaussian fitting method for the estimation of tercile-based categorical probabilities; forecast probability of each category is estimated as a portion of the forecast PDF (Probability Density Function) with respect to the historical one.
MME PREDICTION: product

DMME (SCM)

PMME (GAUS)

http://clik.apcc21.org
MME PREDICTION: skill score

<table>
<thead>
<tr>
<th>Lead Month</th>
<th>When</th>
<th>Variables</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Month</td>
<td>Year 2016, Season JFM</td>
<td>PREC, T850</td>
<td>APCC, CMCC, COLA, CWB, HMC, IRIF, IRI_CA, MIO, MSC, NASA, NCEP, PNU, POAMA</td>
</tr>
</tbody>
</table>

DMME (SCM) ➔ Success rate

PMME (GAUS) ➔ HSS
For those **who wants to play with model data,**

- To allow **user manipulation** of multi-model ensemble prediction in producing his/her own forecast

CLIK

Downscaling: Simulated large scale pattern to station matching

- To provide **statistical downscaling** capability using multi model prediction

MME Prediction
with different model combination
CLIK downscaling

A way to localize existing coarse climate information

CLIK downscaling is mainly based on station to Large Scale Meteorological Field (LSMF) relationship. (Y = a*X + b) By utilizing the simulated LSMF (X, predictor), CLIK estimates seasonal mean precipitation/temperature (Y, predictand) at specific station.

A kind of hybrid system for point-wise seasonal forecast
CLIK downscaling

A way to localize existing coarse climate information

CLIK downscaling is mainly based on station to Large Scale Meteorological Field (LSMF) relationship.

\(Y = a \times X + b \)

By utilizing the simulated LSMF (\(X \), predictor), CLIK estimates seasonal mean precipitation/temperature (\(Y \), predictand) at specific station.

Empirical relationship:

\(\text{LSMP} \sim \text{local station rainfall} \)

![CLIK Interface](http://clik.apcc21.org)
CLIK downscaling: results

Historical station time series & Historical downscaled time series (hindcast) for individual models

Correlation coefficient skill
Deterministic forecast with tercile range from historical observation

No integration (no merging) of models

http://clik.apcc21.org
Target Users

→ Target users are, but are **not limited to** NMHS staffs of developing countries having basic understanding of climate and meteorology.

CLIK was developed and updated based on the analysis of potential users: their status and needs.

1. Limitation of manpower and computing resources
2. Desire for utilizing **dynamical** forecast data
3. Direct benefit on regional community
4. Thirsty for Capacity building: Interests in learning science and technology and high satisfaction from participating in the model developing process
Thank you.
감사합니다.