
Creating Empirical Models

Simple Linear Regression

Many of the problems in seasonal climate prediction are concerned with
determining a relationship between two sets of variables. For example, the sea-
surface temperature (SST) variability of the eastern equatorial Pacific (variable
one) is believed to have a relationship with rainfall variability (variable two) at
certain regions of the globe, at a time scale that exceeds that of day to day
variations. Knowledge of the extent to which such a relationship may be valid
would have as a result that the expected rainfall could be predicted if knowledge
of the state of the eastern equatorial Pacific Ocean is known.

In the example to be presented here, there is a single response variable Y which
depends on the value of an input variable X. In the literature, the Y variable is
referred to as a dependent variable, and the X as an independent variable. In
seasonal climate prediction, the dependent variable is often referred to as the
predictand, and the independent variable the predictor. For the example above,
the predictand is rainfall and the predictor the SSTs of the eastern equatorial
Pacific Ocean, both on a seasonal time scale of several months (mostly 3
months). In practice, however, due to random errors it is never possible to
exactly predict the response for one or a set of predictors. Notwithstanding, one
should be able to construct a simple regression equation that supposes a linear
relationship between the mean response and a single independent variable:

Y = α+ βx

where x is the value of the predictor and Y the response. In order to see if one
can use the above equation as a prediction tool, a good starting point would be to
make a simple plot, called a scatter diagram, to determine if a linear relationship
(or any other) exists between the predictor and predictand values. Consider the
following 20 data pairs (xi,yi), i=1,2,…,20, relating y, a 3-month averaged rainfall
index of a region of the globe (i.e. central southern Africa), to x, a 3-month
averaged SST index of the eastern equatorial Pacific Ocean.

i      xi      yi     i      xi      yi
1 -1.3719 -0.2179 11  0.0670  0.4004
2 -0.4962  0.9133 12  0.0131 -1.0518
3  0.9218 -0.4753 13  1.7473 -1.2373
4 -1.8650  2.0254 14  0.3468 -1.0691
5 -1.0855  0.4186 15 -0.2330 -0.4616
6 -1.8062  2.1255 16  0.0106 -0.6662
7  0.0720  0.3577 17  1.0150 -0.9299
8  0.5173 -0.0106 18  1.5223  1.5044
9  0.2192 -0.8236 19 -0.7204  0.2140
10  0.7199 -0.5498 20  0.4061 -0.4662



A plot of yi versus xi can be seen in Figure 1. The scatter diagram seems to
reflect a linear relationship between x and y. In this case the relationship is
negative: when the SST index increases (decreases), the rainfall index
decreases (increases). Take note of an outlier at approximately (1.5, 1.5).
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Figure 1. Scatter plot

For the example presented here, the SST index is, say, for the 3-month period
September to November (SON), and the rainfall index is the 3-month period
January to March (JFM) that follows the sea-surface temperature period. Thus, if
knowledge of the SON SST index can obtained at the beginning of December,
one should be able to make a qualitative statement about the expected JFM
rainfall. For example, if the SON SST index has been observed to be positive, it
is likely that the following JFM season will be associated with a negative rainfall
index, i.e. drier than average conditions. However, it would be more desirable if a
more quantitative statement about the rainfall of the coming JFM season can be
made. Such a statement would have to include indicators of how much above or
below the climatological average the rainfall index is expected to be and, very



importantly, the degree of uncertainty of the expected outcome (reflected in the
random error of the relationship).

In order to determine estimators of α and β of the simple regression equation of
above, the method of least-squares is employed. If A is the estimator of α, and B
is the estimator of β corresponding to the data set xi, Yi, i=1,2,…,20, then the
straight line A + Bx is called the estimated regression line. Any book on statistical
methods will have an elaborate explanation on how to determine these
estimators and will thus not be discussed here. Furthermore, all statistical
computer software packages also have the ability to easily calculate these
estimators. Figure 2 shows the result of using such a software package to
determine the best linear fit to the data presented above. The α estimator A is
equal to 0, and the β estimator B is equal to –0.5598, which leads to an
estimated regression line of –0.5598x.
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Figure 2. The best linear fit to the data.

A central part of the regression output of the statistical software packages is a
summary of the foregoing information in an ANOVA (analysis of variance) table.
Not all the information in an ANOVA table will be of interest, but it presents



related measures of the “fit” of a regression. The fit is an indication of the
correspondence between the regression line and the scatter diagram of the data.
From a forecasting point of view, the mean-squared error (MSE) is perhaps the
most fundamental of the measures, since it indicates the variability of the
observed predictand around the forecast regression line. In the case of a perfect
linear relationship between predictor and predictand the MSE will be zero, but in
the case of a poor linear relationship the MSE will be large. Another measure of
the fit of a regression is the coefficient of determination (R2) which is, for the case
of simple linear regression, the squared value of the Pearson correlation between
predictor and predictand. Qualitatively, the R2 can be interpreted as the
proportion of the variation of the predictand that is described or accounted for by
the regression. For a perfect regression, the R2 = 1, but for R2 near 0 very little of
the variation is explained. In the majority of applications, however, the response
of a predictand can be predicted more adequately not on the basis of a single
independent input variable but on a collection of such variables.

Multiple Linear Regression

Multiple linear regression is the more general and also more common case of
simple linear regression. There is, as is the case with simple linear regression,
still only one predictand, but there is more than one predictor variable. For
example, seasonal rainfall may be influenced by the El Niño / Southern
Oscillation (ENSO) AND by the SSTs in the Indian Ocean AND/OR the Atlantic
Ocean.

For any K number of predictor variables, the response Y is related to them by the
relation:

Y = β0 + β1x1 + β2x2 + … + βkxk

Simple linear regression constitutes the special case of K = 1. For multiple
regression, each one of the K predictor variables has its own coefficient and the
K+1 parameters are found by simultaneously solving K+1 equations using matrix
algebra. In practice, the calculations are usually done using statistical software
packages, and the calculations are again summarized in an ANOVA table. Care
should however be taken when interpreting the R2 value, because it is not the
square of the Pearson correlation coefficient between the predictand and any of
the predictor values in particular.

Designing a Scientifically Sound Regression Model

The statistical forecasts produced by the linear equations are objective in the
sense that a particular set of predictors will always produce the same forecast for
the predictand, once the forecast equation has been developed. However, many



subjective decisions go into the development of the forecast equations. An
example of a subjective decision is the selection of the predictor set. There are
almost always more potential predictors available that can be used in a
regression, and finding the appropriate combination of predictors is not a straight
forward procedure. The process is definitely not simply an addition of the
members on the list of potential predictors until an apparently good relationship is
achieved, and there are dangers associated with including too many predictor
variables in a forecast equation, which will lead to overfitting the data. An overfit
regression will fall apart when it is used as an operational prediction model. To
counter the possible dangers of including too many predictor variables, firstly
begin the development of the regression equations by choosing only physically
reasonable or meaningful potential predictors. Secondly, the tentative regression
equation needs to be tested on a sample of data not involved in its development.
Thirdly, one needs a reasonably large developmental sample if the resulting
regression is to be stable. By stability is usually understood that the regression
coefficients are also applicable to independent (or future) data, and have not
resulted from an overfit regression.

Suppose that only those predictor variables that have physical relevance are
included in a set of potential predictors. However, it would generally not be useful
to include all of the potential predictors in a final regression equation, because
the predictor variables are almost always mutually correlated, so that the full set
of potential predictors contains redundant information. One needs therefore, a
method to choose among potential predictors, and of deciding how many of them
are sufficient to produce a good prediction equation. This method of selecting a
good set of predictors from a pool of potential predictors is called screening or
stepwise regression of which the most commonly used procedure is known as
forward selection. On the forward selection step, all the potential predictors are
examined individually for the strength of their linear relationship to the predictand.
The predictor whose linear regression is best among all candidate predictors is
chosen as x1. At the next stage, the predictor variable that is chosen as x2, is the
one that improves the model the most. Subsequent step will follow this procedure
exactly. An alternative screening approach is called backward elimination, which
is opposite to that of forward selection: the initial point is a regression containing
all the potential predictors, and at each step the least important predictor variable
is removed from the regression equation. Without any stopping rule, both forward
selection and backward elimination will continue until all the candidate predictor
variables were included (forward selection) or until all the predictor variables had
been eliminated (backward elimination). The MSE could be used as such a rule:
if a regression equation were being developed little would be gained by adding
more predictors if the root of the MSE lies within a 95% confidence interval
around the forecast value. Ideally the stopping rule would be at a point where the
MSE does not decline appreciably with the addition of more predictors. It is
normally good practice to have the number of predictors substantially less than
the sample size (training period).



Once the stepwise regression has been used to design the regression equation
which contains the most suitable predictor or a combination of predictors, one
way of subsequently testing the operational performance of the model is to use a
technique called cross-validation, where the value that is predicted is omitted
from the developmental sample or training period. Cross-validation can be
performed by removing a distinct but corresponding partition from the predictor
and predictand data. Suppose there are n partitions of the original predictor and
predictand fields. For some partition index η, where 1≤η≤n, the ηth predictor and
predictand fields are removed. The remaining n-1 partitions are used to train the
model. The model prediction is then tested against the predictand of index η,
which was withheld from the training period. This procedure is repeated n times,
sequentially omitting a single partition pair, resulting in a series of n forecast
partitions, each of which can be directly compared with the observed partitions.
The following diagram illustrates the idea of cross-validation further by showing a
simple example of 6 years of data for an arbitrary predictor and predictand setup.

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6
Model 1 Omitted
Model 2 omitted
Model 3 omitted
Model 4 omitted
Model 5 omitted
Model 6 omitted
Model 7

Model 1 uses the information of the predictor and predictand data (Year 2 to Year
6) to predict the predictand of the first year, Model 2 for the second year, and so
on until Model 6 is used predict the outcome of Year 6. Each of these models has
a 5-year training period. Model 7, that uses all 6 years of the training period, does
NOT estimate the model’s true forecast performance, and will lead to inflated skill
levels because the value that is predicted is also contained in the training period
of the regression model. Although the example above shows a removal of a
single year from the training set, it is good practice to first determine of any
temporal autocorrelation exists in the data. If significant autocorrelation exists, it
is recommended that the years omitted from the training set for each model be
expanded to three years (one year on either side of the omitted years of Model 2
to 5 in the above diagram, but for the year after the omitted year in Model 1 and
the year before the omitted year in Model 6). This procedure may be necessary
when there are trends in the data. For long-term trends, however, a wider time
window (more years) will not solve the problem, and the data may (but not
necessarily) need detrending.

A further estimation of the performance of a regression model is a technique
called retro-active forecasting. The process involves the evaluation of prediction
compared to observations excluding any information following the target year and
can be explained by considering a retro-active forecast procedure during a 6-



year period following the 6-year training period of Model 7. The regression model
is first trained considering information leading up to and including Year 6. Three,
say, consecutive years are predicted (Year 7, 8 and 9) using the same
information. The model subsequently uses information leading up to and
including data for Year 1 to 9 to predict the following three years (Year 10, 11
and 12). It should be noted that the training set of the above example of 6 years
(Model 7) is inadequate, and in practice should exceed several decades.

Forecast Skill Estimation

There are many different ways to estimate the forecast skill (the relative accuracy
of a set of forecasts) of a regression model. By accuracy is meant the
correspondence between individual forecasts and the events they predict. In
estimating the skill, a possible scoring method to use is a variation of the
standard tercile approach. Each of the observed and predicted fields is separated
into its own three equiprobable classes or terciles. These terciles are referred to
as above-normal (A), near-normal (N), or below-normal (B) categories. The
categorical forecast is compared with that of the observed to calculate the model
skill. Categorical means that the forecast consists of a statement that one and
only one of a set of possible events will occur.

Categorical forecast verification often involves the use of a contingency table of
absolute counts. The following 3 X 3 contingency table is a 3-category (A, N or B)
forecast verification where each variable in the nine boxes represents nine
possible forecast outcomes:

OA ON OB

FA R S T

FN U V W

FB X Y Z

For example, R represents the number of cases from a verification sample when
the observed (O) and forecast (F) categories were for above-normal values to
have occurred, and W represents the number of cases when the observed
category was below-normal and the forecast category was near-normal, and so
on. The sample size of the verification data is the summation of all the entries in
the table.



Only very basic accuracy measures of the multicategory forecasts will be
discussed in some detail here, and they are the hit score, false alarm ratio (FAR)
and the bias. The hit score is the number of times a correct category is forecast
(R+V+Z). The FAR is that fraction of forecast events that failed to materialize
(best possible FAR is zero and worst possible FAR is one), and the bias is the
comparison of the average forecast with the average observation. A bias greater
than one indicates overforecasting and a bias less than one indicates
underforecasting. The bias for forecasts of above-normal is (R+S+T)/(R+U+X), of
near-normal is (U+V+W)/(S+V+Y), and of below-normal is (X+Y+Z)/(T+W+Z).
The FAR for forecasts of above-normal is (S+T)/(R+S+T), of near-normal is
(U+W)/(U+V+W), and of below-normal is (X+Y)/(X+Y+Z).

An Example of Model Testing

This section deals primarily with the process of testing a regression model,
assuming that only physically plausible predictors have been considered and the
screening process has been adequately performed. The data used to design the
model is that of the above example where an index of SSTs are related to a
rainfall index. The lag-1 autocorrelations for both the predictor and predictand
sets are less than 0.2, so it would be safe to test the model with a cross-
validation design that omits only one year at a time (like the example presented
above). The estimated regression lines for each of the 20 cross-validation
models are (with the training period in parenthesis):

Model 1: Y1  =  0.0579 – 0.6434x (years 2 to 20)
Model 2: Y2  = -0.0339 – 0.5421x (year 1 and 3 to 20)
Model 3: Y3  = -0.0022 – 0.5620x (years 1 and 2 and 4 to 20)
Model 4: Y4  = -0.0640 – 0.4342x (years 1 to 3 and 5 to 20)
Model 5: Y5  =  0.0106 – 0.5719x (years 1 to 4 and 6 to 20)
Model 6: Y6  = -0.0716 – 0.4237x (years 1 to 5 and 7 to 20)
Model 7: Y7  = -0.0209 – 0.5614x (years 1 to 6 and 8 to 20)
Model 8: Y8  = -0.0149 – 0.5679x (years 1 to 7 and 9 to 20)
Model 9: Y9  =  0.0370 – 0.5512x (years 1 to 8 and 10 to 20)
Model 10: Y10 =  0.0080 – 0.5537x (years 1 to 9 and 11 to 20)
Model 11: Y11 = -0.0230 – 0.5614x (years 1 to 10 and 12 to 20)
Model 12: Y12 =  0.0550 – 0.5590x (years 1 to 11 and 13 to 20)
Model 13: Y13 =  0.0164 – 0.5296x (years 1 to 12 and 14 to 20)
Model 14: Y14 =  0.0464 – 0.5428x (years 1 to 13 and 15 to 20)
Model 15: Y15 =  0.0313 – 0.5674x (years 1 to 14 and 16 to 20)
Model 16: Y16 =  0.0348 – 0.5594x (years 1 to 15 and 17 to 20)
Model 17: Y17 =  0.0202 – 0.5382x (years 1 to 16 and 18 to 20)
Model 18: Y18 = -0.1423 – 0.7878x (years 1 to 17 and 19 and 20)
Model 19: Y19 =  0.0103 – 0.5675x (years 1 to 18 and 20)
Model 20: Y20 =  0.0127 – 0.5543x (years 1 to 19)



Take note of the regression equation of Model 18. The estimators of the equation
are quite different from those of the other 19 models, which is the result of an
outlier in the predictand data (rainfall). This outlier can be seen at approximately
(1.5, 1.5) in Figure 3 that shows the linear fits of the 20 models. The red line is
the best linear fit of Model 18. The Pearson correlation coefficients between the
predictor and predictand data for the different training periods for all the models
except Model 18 range from 0.44 to 0.61, but the predictor-predictand correlation
associated with Model 18 is 0.79. Model 18 is probably a more suitable
regression that describes the physical association between the rainfall and the
SSTs, because this extremely large rainfall anomaly was caused by a single
synoptic event that lasted for a relatively short period of time (about one week)
during the JFM rainfall season, and was more than likely not associated with the
SST variability of the eastern equatorial Pacific (the predictor in the regression
models). However, one should be careful when omitting such seasons for which
the model did not make an accurate forecast simply because the exclusion of
them would make the model look good. There may be other physical predictors
that were not considered in designing the model that may have the potential to
improve on the forecast accuracy of those seasons that were poorly predicted.
Notwithstanding, any statistical model will most likely always have difficulty in
forecasting rainfall during a season accurately if most of that season’s rainfall is
the result of a single synoptic event that causes large amounts of rainfall.

By removing the outlier from the data there are only 19 seasons left. Because it
is preferred that the 3 classes of above-normal, near-normal and below-normal
are equiprobable (equal chance of an event to fall into any of the 3 categories),
we would like to use a data set consisting of a number of events that are divisible
by 3. Therefore, we will subsequently redo the cross-validation exercise using
only 18 seasons by excluding the first season (or any other) of the 19-event
predictor-predictand data. Figure 4 illustrates the cross-validated time series of
the 18 seasons used in the analysis. The model seems to be able to capture
most of the rainfall variability accurately, reflected also by the high correlation
value. However, it is necessary to obtain a clearer indication of the model’s ability
to predict the categories correctly. The near-normal category is shown in Figure 4
as the horizontal lines on either side of the zero line. That they are not symmetric
around the zero line demonstrates the rainfall data’s skewness. Rainfall data are
usually skewed, especially over arid and semi-arid regions, and is a result of the
fact that rainfall measurements are physically constrained to lie above zero mm,
which has as a result that the data are positively skewed. Most of the statistical
techniques, including the one being discussed here, make the assumption that
the data used to calculate the estimators of the equation follow the familiar bell-
shaped curve of the Guassian distribution. If the rainfall indices were perfectly
Gaussian, there would not be any observed skewness. However, as the sample
size (i.e. the training period) becomes large, the arithmetic mean of a set of
independent observations will have a Guassian distribution. This statement is
called the central limit theorem, and is directly applicable to atmospheric data.
Thus, it is necessary to use as long as possible records of data to construct the



linear model, provided that the data have been quality controlled. As a rule of
thumb, linear models predicting seasonal rainfall variability should be based on
data that have record lengths exceeding 30 years.

 

Figure 3. Linear fits of the 20 cross-validation models. The red line is the fit of Model 18.

The near-normal category was easily obtained by ranking the 18 rainfall seasons
from the largest to the smallest index. The 6 largest numbers are associated with
the above-normal category, the 6 smallest numbers with the below-normal
category, and the remaining middle 6 values with the near-normal category.
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Figure 4. Cross-validated forecasts (dashed line) and observed (solid) rainfall indices using the data
from 18 seasons. The horizontal lines on either side of the zero line are the upper and lower limits of
the near-normal category. The correlation between the observed and predicted indices is in the
bottom left corner of the graph.

Based on this description of the categories, the following 3 X 3 contingency table
summarizes the forecasts shown in Figure 4 categorically:

OA ON OB

FA 4 1 0

FN 2 2 4

FB 0 3 2



The hit score is the sum of the entries on the diagonal and is seen to be 8. The
bias for predicting above-normal is (4+1+0)/(4+2+0) = 5/6 = 0.8333, for predicting
near-normal is (2+2+4)/(1+2+3) = 8/6 = 1.3333, and for below-normal is
(0+3+2)/(0+4+2) = 5/6 = 0.8333. Thus, for this model the above- and below-
normal categories were being underforecast, and the near-normal category
overforecast. It is not uncommon that statistical forecasts do not have the same
variance as the observed data, and may therefore be variance adjusted by
inflation the amplitudes of the forecasts in order to counter the near-perpetual
forecasts of near-normal rainfall (or any other predictand). The adjustment could
be done by dividing each of the forecasts of the training period by the Pearson
correlation. However, the adjustment did not make much of a difference for the
example presented here. The FAR for forecasts of above-normal rainfall is
(1+0)/(4+1+0) = 1/5 = 0.2, for near-normal is (2+4)/(2+2+4) = 6/8 = 0.75, and for
below-normal is (0+3)/(0+3+2) = 3/5 = 0.6. Thus, when the model predicts above-
normal rainfall it should get it correct most of the times. This is less so for the
other two categories where the FARs are approaching the value of one.

Other Statistical Methods

Discriminant analysis, cluster analysis, analogue methods, optimal climate
normals and neural networks.
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