Seasonal and inter-annual climate forecasting:
the ‘new’ tool for increasing preparedness to
climate variability and change in agricultural
planning and operations

Holger Meinke and Roger Stone
Objectives

- Stress the need for cross-disciplinary R&D
- Discuss the importance of systems approaches using agricultural simulation models for decision-making
- Highlight the need for participatory approaches
- Present case studies showing the consequences of climate variability and management responses and
- Touch on issues of value, skill and artificial skill in forecast systems.
Using the best science has to offer we need to improve the performance of agricultural systems in terms of:

- economic performance
- environmental impact
- and social consequences

effective integration (of data, information or knowledge) **requires an issue focus rather than a methodology or discipline focus**
Technologies must match the socio-economic system ==> need for rural sociology

Threshing finger millet, India

Threshing wheat, Australia
Current practices:
low profitability, high environmental impact

Future practices:
high profitability, low environmental impact
The role of climate forecasting

- Climate forecasting is not the panacea to all our problems in agriculture.
- It is one of many risk management tools that sometimes plays an important role in decision-making.
- To understand when to use this tool where and how is a complex and multi-dimensional problem (disciplines, scales, decision types etc).
A perfect forecast is also perfectly useless unless it changes a decision.
“... the drought cycles ... follow a rhythm in the opening and closing of their periods that is so obvious as to lead one to think that there must be some natural law behind it all, of which we are as yet in ignorance.”

Euclides da Cunha, ‘Os Sertões’, 1902
Farmers fearful as drought grips

By ANNE BARBELIUK

Byrne storage levels are critical in drought-affected parts of Tasmania, with some farmers so desperate for water they are taking the risk of carting water. The cost of carting water is costly and almost unheard of in some of these places, but these are not the only farmers wanting to irrigate. They are severely restricted.

Carting water is costly and almost unheard of in some of these places, but these are not the only farmers wanting to irrigate. They are severely restricted.

Global warming to have huge impact

THE impact of global warming is more severe than first thought and the aftereffects of climate change will have a profound impact for centuries, said a major UN report released yesterday.

The report by the United Nations Intergovernmental Panel on Climate Change paints a picture of weather changes that will raise global sea levels and temperatures, putting pressure on agricultural production and straining already scarce water resources.

"The scientific consensus presented in this comprehensive report about human-induced climate change should sound alarm bells in every national capital and in every local community," UN Environment Program executive director Klaus Tøpfer told reporters after a conference in Shanghai.

Tøpfer called on governments and the private sector to "move boldly ahead with clean energy technologies" and to begin preparing for "rising sea levels, changing rain patterns, and other impacts of global warming".

The IPCC report is a three-year compilation of the best scientific knowledge about the effects of rising global temperatures and concludes that much of the damage to the environment is already irreversible.

The atmospheric concentration of carbon dioxide, the most prevalent of the so-called "greenhouse gases", has surged by 31% since 1750.
The facts are

- rainfall varies spatially and on different time scales
- this variability affects agricultural productivity
- some of this variability is predictable

How can be use such knowledge profitably?
To effectively manage agricultural systems in a variable and changing climate requires:

- a sound scientific understanding of the causes of climatic variability and our ability to project ahead (predict) and
- knowledge and appreciation of how this ability to forecast production risks can influence and change management decisions.
Government national / regional

Insight into socio-economic FEASIBILITY

Rural Sociology

Agricultural Systems Science

Insight into technical POSSIBILITY

Systems analysis

Dynamic climate modelling

Insight into climatic PROCESSES

FARMER

Dynamic climate modelling

Seasonal climate forecasts

Insight into climatic PROCESSES

Agricultural Systems Science

Insight into technical POSSIBILITY

Systems analysis

Farm economics

Agricultural Systems Science

Insight into technical POSSIBILITY

Systems analysis

Farm economics

Government national / regional

Insight into socio-economic FEASIBILITY

Rural Sociology
Climate and Agriculture: From Vulnerable to Resilient Farming Systems

- ‘Resilient systems’ are systems that are to a large extent 'climate proof' by allowing farmers to draw on systems resources (eg. water, nutrients, reserves) at times of need, with these 'debts' being repaid once climatic conditions improve.

- Resilience requires the ability to address potentially conflicting goals simultaneously (‘triple bottom line’, sustainable development).
<table>
<thead>
<tr>
<th>Name and/or Type of Climate Phenomena</th>
<th>Frequency (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madden-Julian Oscillation, intraseasonal (MJO)</td>
<td>0.1 – 0.2</td>
</tr>
<tr>
<td>SOI phases based on El Niño – Southern Oscillation (ENSO), seasonal to interannual</td>
<td>0.5 – 7</td>
</tr>
<tr>
<td>Quasi- biennial Oscillation (eg. NAO)</td>
<td>1 – 2</td>
</tr>
<tr>
<td>Antarctic Circumpolar Wave (AWC), interannual</td>
<td>3 – 5</td>
</tr>
<tr>
<td>Latitude of Sub-tropical ridge, interannual to decadal</td>
<td>?? – 11</td>
</tr>
<tr>
<td>Interdecadal Pacific Oscillation (IPO)</td>
<td>13+</td>
</tr>
<tr>
<td>Decadal Pacific Oscillation (DPO)</td>
<td>13 – 18</td>
</tr>
<tr>
<td>Multidecadal Rainfall Variability</td>
<td>18 – 39</td>
</tr>
<tr>
<td>Interhemispheric Thermal Contrast (secular climate signal)</td>
<td>50 – 80</td>
</tr>
<tr>
<td>Climate change</td>
<td>???</td>
</tr>
</tbody>
</table>
Agricultural Systems and Climate Variability

Decision Type (eg. only)

<table>
<thead>
<tr>
<th>Logistics (eg. scheduling of planting / harvest operations)</th>
<th>Intraseasonal (> 0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactical crop management (eg. fertiliser / pesticide use)</td>
<td>Intraseasonal (0.2 – 0.5)</td>
</tr>
<tr>
<td>Crop type (eg. wheat or chickpeas)</td>
<td>Seasonal (0.5 – 1.0)</td>
</tr>
<tr>
<td>Crop sequence (eg. long or short fallows)</td>
<td>Interannual (0.5 – 2.0)</td>
</tr>
<tr>
<td>Crop rotations (eg. winter or summer crops)</td>
<td>Annual / biennial (1 – 2)</td>
</tr>
<tr>
<td>Crop industry (eg. grain or cotton, phase farming)</td>
<td>Decadal (~ 10)</td>
</tr>
<tr>
<td>Agricultural industry (eg. crops or pastures)</td>
<td>Interdecadal (10 – 20)</td>
</tr>
<tr>
<td>Landuse (eg. agriculture or natural systems)</td>
<td>Multidecadal (20 +)</td>
</tr>
<tr>
<td>Landuse and adaptation of current systems</td>
<td>Climate change</td>
</tr>
</tbody>
</table>
What we learned from experience

- Farmers are often targeted as the users of climate forecasts. However, they might not be the most responsive target group.
- Climate forecasting is one of many instruments that aims to reduce production uncertainty.
- Participatory systems analysis needs to establishes the role of climate forecasting in relation to other tools.
Consistently negative April/May SOI Phase

June to Oct Rainfall (mm)

Median June to Oct Rainfall (190)

Why do we need agricultural models?
Shire wheat yield forecast based on SOI phase

Start-of-season forecast
(June 2002)

End-of-season forecast
(September 2002)
Managing Water & N in a Variable Climate
Maturity * density * SOI (Emerald)
Moderate depth vertisol, full profile, Nov planting

Box plot of Yield (kg per ha)

<table>
<thead>
<tr>
<th>Variety</th>
<th>Late maturity</th>
<th>Early maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High density</td>
<td>7000</td>
<td>5000</td>
</tr>
<tr>
<td>Low density</td>
<td>6000</td>
<td>4000</td>
</tr>
<tr>
<td>Low density</td>
<td>5000</td>
<td>3000</td>
</tr>
<tr>
<td>High density</td>
<td>4000</td>
<td>2000</td>
</tr>
<tr>
<td>Low density</td>
<td>3000</td>
<td>1000</td>
</tr>
<tr>
<td>Late maturity</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>Early maturity</td>
<td>1000</td>
<td>0</td>
</tr>
</tbody>
</table>
Managing Water & N in a Variable Climate

Maturity * density * SOI (Emerald)

Moderate depth vertisol, full profile, Nov planting

SOI phase consistently negative SOI phase consistently positive

- Basis of simulation-aided discussion - process not tool
- Private and public advisors being trained
Pakistan: wheat - fallow - wheat system

Issue:
- traditional summer fallow followed by wheat

Question:
- can a legume opportunity crop instead of fallow be economically viable?

Approach:
- simulate it!
Gross Margin Difference (rotation - monoculture)

Probability of Exceedance (%)

-20000 -10000 0 10000 20000 30000

GM (Rs/ha)

P1&3
P2&4
P5
Simulated drainage under a wheat-fallow-wheat rotation in Qld

Wallumbilla

Roma

Talwood
Specifications for a new climate forecasting system

Question: have we reached the limits of predictability with statistical forecast techniques?

Caution: Any dynamic approach must be clearly better than our current statistical methods.
Forecast verification issues

- Scoring techniques
- LEPS, ROCS, hit rates
- hindcast verification issues
- cross-validation
- artificial skill
Specifications for a new climate forecasting system

- mechanistically sound
- statistically sound (eg. x-validated)
- reproducible and transparent
- able to be explained - not a black box
- demonstrate how it would have operated over time
- peer and collegiate review incl. publication in a refereed journal
Specifications for a new climate forecasting system

- can be used in agricultural models and supported by delivery system
- supported by collegiate activity
- liaison with National Met Services
- risk management system in place (legal/political)
Forecast Quality (FQ)

- FQ does not linearly translate from one forecast quantity to the next (e.g., rainfall not equal production)
- FQ is an essential but not a sufficient attribute of an effective forecasting system
- FQ must be seen in context with the decisions based on the forecast
- ‘Skill’ is a statistical component of FQ
‘Skill’ vs ‘Value’

- Clearly define what we mean by ‘skill’
- Need to move towards a consensus view why we need to measure forecast skill and how to do it
- Put forecast skill into perspective together with other essential attributes of effective forecasting systems
Quality Measures

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEPS</td>
<td>Revised LEPS score</td>
</tr>
<tr>
<td>BS</td>
<td>Brier score</td>
</tr>
<tr>
<td>BSP</td>
<td>Brier score (adapted)</td>
</tr>
<tr>
<td>LEPSP</td>
<td>Revised LEPS score (adapted)</td>
</tr>
<tr>
<td>KWP</td>
<td>Kruskall-Wallis test p-value</td>
</tr>
<tr>
<td>ICCP</td>
<td>Intra Class Correlation</td>
</tr>
<tr>
<td>PEX</td>
<td>Probability of exceedence</td>
</tr>
<tr>
<td>QKL</td>
<td>Kullback-Leibler Divergence measure (KL1 + KL2)</td>
</tr>
<tr>
<td>LRP</td>
<td>Log rank test p-value</td>
</tr>
<tr>
<td>KL1</td>
<td>Measure of shift in QKL</td>
</tr>
<tr>
<td>SAVGD</td>
<td>Squared Average Deviation</td>
</tr>
<tr>
<td>AMD</td>
<td>Absolute Median Difference</td>
</tr>
<tr>
<td>VR</td>
<td>Variance Ratio</td>
</tr>
<tr>
<td>KL2</td>
<td>Measure of variance in QKL</td>
</tr>
<tr>
<td>RR</td>
<td>80% Range Ratio</td>
</tr>
<tr>
<td>IQR</td>
<td>Inter Quartile Range Ratio</td>
</tr>
</tbody>
</table>

Traditional measures (4)
- Measure of shift in QKL
- Squared Average Deviation
- Absolute Median Difference
- Variance Ratio

Other (7)
- Measure of variance in QKL
- 80% Range Ratio
- Inter Quartile Range Ratio

Shift (3)
- Revised LEPS score
- Revised LEPS score (adapted)
- Probability of exceedence

Dispersion (4)
- Log rank test p-value
- Kruskall-Wallis test p-value
- Intra Class Correlation
- Probability of exceedence

All quality measures were derived using cross validation
Comparison of Forecast Quality Measures – Wheat

No single quality measure is adequate!!!
Effective applications of climate forecasts (value, \(V \)) is a function of the quality of the forecast (FQ), timing and mode of forecast delivery (communication, \(C \)) and its suitability for influencing specific decisions (utility, \(U \)).

\[
V = f (\alpha FQ, \beta C, \chi U)
\]

Coefficients \(\alpha, \beta, \) and \(\chi \) will vary and depend on individual circumstances (range: 0 to 1). Hence, the impact of a forecast is maximised when all coefficients approach unity.

‘Skill’ or FQ is an essential but not a sufficient attribute of a forecasting system.

If the forecast does not lead to a chance in a decision that has a better outcome, it has no or negative utility and hence no value.
Why probabilities?

- We know that chaos plays a large role in climate systems.
- We have a responsibility to communicate our knowledge as well as our ignorance.
- We are not the decision makers – all we can provide is discussion support, the ultimate decision rests with the practitioner (choices, chances, consequences).
- ‘Dumbing down’ the message can lead to poorer risk management (moving from stable to fickle systems).
- Don’t insult farmers’ intelligence – they are already good risk managers.
- Beware of gurus!
Artificial skill

- ‘apparent’ hindcast skill in statistical forecasting schemes arising from “chance”
- skill that does not survive when the forecasting scheme is applied in real time to new or independent data (need for cross validation)
Artificial skill

- The smaller the sample size, the greater the chance of spuriously exceeding a given skill level
- The greater the number of potential predictors, the greater the chance of artificial skill
- The more combinations you try, the more spurious relationships you’ll find
- The atmosphere acts in part as a random number generator

Moral: don’t go trawling through vast numbers of potential prediction models in search of apparent skill

Commandment: Thou shalt not search for the highest score and simply use the model that generates that score!
Modelling as a communication tool

● The language of climatologists

Decadal climate variability is evident in the first EOF of near-global SSTs and Pressure Field data, band filtered for various frequencies.
Modelling as a communication tool

- The language of farmers

The last few years were bad - first the drought and then too much rain. What can I do to better cope with such a variable climate?
Modelling as a communication tool

- The language of crop physiologists

Crop transpiration demand (T_d) is determined by the amount of intercepted radiation and VPD

$$T_d = \frac{TE_c}{VPD} \times (RUE \times I)$$

($TE_{c_Wheat} = 4.7 \text{ g m}^{-2}\text{ mm}^{-1}\text{ kPa}$)
Modelling as a communication tool

- The language of computer programmers

! potential biomass production based on intercepted radiation
 call dm_plt_tot_pot ()
! demand for soil water. new subroutine sw_demand uses
! dm_plt_tot_act_dlt to determine demand for soil water based on
! a tec of 4.7
 call sw_demand (c_demand_switch)

Decadal Variability - EOF scores

-3
-2
-1
0
1
2
3
1860 1885 1910 1935 1960 1985

Decadal Variability - EOF scores
-11-13 years - 15-20 years
Modelling as a communication tool
The language of cross-disciplinary systems scientists

Changing between dryland cotton and intensive cereal rotations based on the long-term climate outlook could lift your average profits by 50%. This would also reduce your runoff and erosion potential.
Modelling as a communication tool

The aim is to provide knowledge and wisdom systems rather than information systems.