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Outline

• S2S predictability:  
- Gray zone between weather vs climate predictability


• Phenomena/modes of variability on S2S scale (eg. MJO)


• Slowly varying atmospheric boundary conditions (Soil moisture, snow 
cover/snow pack, sea ice, SST, …)
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Atmospheric Predictability
Weather:  
Initial Value 
Problem  

(e.g., baroclinic 
waves) 

Seasonal Climate:  
Boundary Value Problem  

(e.g. ENSO SST anomalies)

S2S:  
Mixed  

Initial Value (e.g. MJO)  
and Boundary Value 

Problem  
(e.g. Soil moisture, 
snow cover/snow 

pack, sea ice, SST) 

T I M E    A V E R A G I N G !
Predictability of the Second Kind (Lorenz, 1975)



How should the target periods be defined 
for sub-seasonal forecasts?

For example, the 4w4w calculations for JJA will include
verifying data from 30 June to 16 October.

3. Results

a. CORt—Correlation with the ensemble mean totals

Maps of CORt for the contrasting seasons of DJF and
JJA and for the window/lead time combinations of 1d1d,
1w1w, and 4w4w are displayed in Fig. 2. Positive values
indicate positive skill in the sense that there is an in-
phase relationship between the forecast and observed
values. For 1d1d, a positive skill is achieved everywhere
except over the subtropical dry zones over Africa, and
the eastern Atlantic and eastern Pacific Oceans. In DJF
the highest large-scale 1d1d CORt (.0.5) is achieved
over the North Pacific and North Atlantic, whereas in
JJA the region of highest large-scale CORt is over the
midlatitudes of the Southern Hemisphere. This is con-
sistent with previous work (Ebert et al. 2003) that shows
that extratropical precipitation is generally easier to
predict for short lead times in winter when it is associ-
ated mainly with synoptic-scale systems such as fronts,
whereas in summer it is more often associated with
convective systems such as thunderstorms that are harder
to predict. (This short-range seasonality in the extratropics
will become more apparent in the zonally averaged skill
plots in Figs. 3, 6, and 10.)
Interestingly, the 1d1d CORt maps (Fig. 2) also in-

dicate some patches of very high skill in the equatorial
zone, especially over the Indian and Pacific Ocean sec-
tors in DJF. This was not initially anticipated given our
review of published papers as discussed in the introduction.
We did not expect such high skill in the tropics at short
lead times.
At the longer window/lead time scales of 1w1w and

4w4w, the CORt maps of Fig. 2 indicate greatest skill

(CORt. 0.7) over the tropical Pacific, especially in DJF.
This appears to be the result of the predictability pro-
vided by ENSO. Greatest precipitation skill (CORt $
0.9) is achieved over the central-eastern equatorial Pa-
cific because this is where precipitation is most strongly
related to the SST variations of ENSO (Weare 1987).
Indeed, these maps look much like the maps of SST skill
for POAMA provided in Cottrill et al. (2013). Further,
DJF is when ENSO events typically reach their peak
SST anomaly, so greater precipitation prediction skill
from forecasts initialized in DJF is somewhat expected.
Elsewhere in the tropics there is moderate skill (CORt
. 0.5) over the Indian Ocean and just to the north of the
MaritimeContinent, especially inDJF, which appears to
be at least partially a result of the MJO (cf. Fig. 8 of
Marshall et al. 2011).
A further interesting feature from Fig. 2 is the band of

CORt. 0.3 extending around the globe at the latitudes
of 508–658S for 4w4w in DJF. Our initial thought was
that this may be related to the southern annular mode
and its relationshipwithENSO (L’Heureux andThompson
2006). This relationship is known to be strongest in DJF.
However, as we will show later, this signal mostly dis-
appears when the skill associated with the climatological
seasonal cycle is removed (using CORa), indicating that
it stems from a pronounced seasonal cycle that is well
represented by the model during DJF for those latitudes.
Information from the intermediate window/lead times

is presented in Fig. 3, which shows the zonally averaged
CORt for themodel forecasts for six different lead times
and averaging windows, extending from 1d1d to 4w4w.
In the extratropics at short lead times, greater skill in
winter than summer, as discussed above, is readily ap-
parent. In both the Northern and Southern Hemisphere
the zonally averaged CORt is greater than 0.5 in winter
and less than 0.5 in summer (1d1d window/lead time).

FIG. 1. Schematic of the time window and lead time definitions used in this analysis. The
horizontal axis represents forecast time from the initial condition. The expression ‘‘1d1d’’ re-
fers to an averaging window of 1 day at a lead time of 1 day. Similarly, ‘‘2d2d’’ represents an
averaging window of 2 days at a lead time of 2 days, and so on. Note that 1d1d is what is usually
called ‘‘day 2’’ in other papers, and 1w1w is what is usually called ‘‘week 2.’’
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Zhu et al (2014, MWR, 
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The Seamless Predictability concept B. J. Hoskins

Figure 1. The seamless weather–climate prediction problem. The time-scales are shown along the axis in the middle. The focus for prediction in the
years 1980–2005 is indicated by the red lines below this. Some phenomena on the different time-scales are shown at the bottom (acronyms are given in
the text). At the top are indicated the components of the Earth system that need to be represented.

In an El Niño–Southern Oscillation (ENSO) event,
the warm waters of the equatorial west Pacific and the
associated region of deep convection in the atmosphere
spread eastwards. ENSO events generally evolve in similar
ways on seasonal time-scales, and during this time they
influence the weather around much of the Earth. In this
case it is a coupling of the dynamics of the ocean and the
dynamics and physics of the atmosphere that underlie the
evolution of the phenomenon.

These examples introduce a theme of this article: the
phenomena in the Earth system that occur on all time-scales
imply potential predictive power for the atmosphere on
that time-scale. This predictability is associated with the
inertia or predictable evolution of the phenomena. If we can
understand, identify and model these phenomena, then we
can hope to be able to determine the difference between
weather and climate behaviour that has some pattern to it
and behaviour that is random: we will be able to discriminate
better between the music and the noise∗. The notion of
considering ‘what is music and what is noise’ again runs
through this article.

In section 2, the general weather–climate problem will
be considered. In section 3, aspects of prediction on specific
time-scales increasing from the first day up to a century
will be discussed. Given the huge range of time-scales, the
discussion on each will necessarily be partial and will be done
using specific examples or ideas. The author apologises for
the consequent lack of references to the huge bodies of
work on the various time-scales. Finally some concluding
comments will be made in section 4.

2. The weather–climate problem

As illustrated in Figure 1, the focus for prediction in the 25-
year period 1980–2005 could be considered to be broadly
on three discrete ranges of time-scale within the spectrum
from within the first day to a century. The weather forecast
focus was on a day and upwards to one week. There was also
much activity on seasonal prediction. The focus for climate
prediction (or more correctly projection) was mainly on
the long-term change to a new equilibrium climate or more
latterly on the end of the twenty-first century.

However, phenomena occur on all time-scales. Examples
of these are indicated in the lower part of Figure 1. Taking

∗It was John Green of Imperial College whom I first heard some 30 years
ago make the comment ‘that’s not noise; it’s music!’ when someone
talked to him about climate noise.
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Figure 2. The prediction problem for a particular time-scale. External
forcing and longer time-scales influence the behaviour. The evolution of
phenomena on the time-scale of interest is central to the prediction. The
smaller scales that are slave to these phenomena can be expected to feed
back on them in a manner that can be represented in a deterministic
fashion. Other variability on these scales (denoted ‘free’) will introduce a
stochastic element to the parametrisation problem.

one of these, a block, this interruption to the westerly flow
in middle latitudes can be initiated on synoptic time-scales
by large north–south excursions of air associated with a
slow-moving midlatitude depression. It then often persists
beyond the synoptic time-scale, characteristically bringing
extreme heat in summer and cold in winter. (Examples of
both of these extremes will be discussed later.) It is clear
that the weather–climate prediction problem is seamless
(WCRP, 2005): the atmosphere knows no barriers in time-
scales. This provided the basis for the WCRP 2005–2015
strategic framework for its research programme, and the
weather–climate strategy in Shapiro et al. (2009) and Brunet
et al. (2010)†. It is also clear that phenomena which may
have potential predictability cover the range. These ideas
pervade the whole discussion in this article.

However the extent and complexity of the
weather–climate system that is required in the predic-
tion model depends on the time-scale range considered.
For 1 day, a regional atmospheric model suffices. Moving
beyond this, a global atmospheric model is required. Per-
haps for diurnal tropical convection, but certainly on the
one-month time-scale, it is necessary to represent the evolv-
ing skin temperature of the tropical ocean. At this time-scale
and longer, an interactive upper ocean is required. For one
season and beyond, the deep ocean and also sea-ice need
to be simulated. The land surfaces, and in particular the
variation of soil moisture and snow cover, need to interact
at 1 month; beyond the annual time-scale, interactive veg-
etation on the surface must also be represented. Of course

†Earlier, Palmer and Webster (1995) had put forward the advantages of
a unified approach to weather and climate modelling on a wide range of
time-scales.

Copyright c⃝ 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)

Hoskins (2012, DOI:10.1002/qj.1991 )

“The phenomena in the Earth system that occur on all time-scales imply potential 
predictive power for the atmosphere on that time-scale.”

S2S



S2S Phase II Research Foci on Sources of Predictability  

• MJO prediction and Teleconnections: incl. high impact weather in the tropics/subtropics


• Land Initialization and Configuration: observing system impact on land initialization/S2S 
forecasts; land/atmosphere processes in S2S models; land surface impacts on extremes


• Ocean and Sea Ice Initialization and Configuration: role of ocean-atmosphere coupling 
on S2S; sea ice process simulation, initialization, prediction; S2S marine prediction (eg 
storm surge, fisheries & coral bleaching)


• Stratosphere:  role of vertical coupling, stratospheric systematic errors, and impact of 
quality of stratospheric initial conditions 


• Atmospheric Composition: impact of prognostic aerosols on S2S forecasts; level of 
complexity needed; predictability of aerosols (e.g. dust) & potential forecast value for 
applications



ECMWF 
Sub-monthly 
forecast skill

  

ABSTRACT 

CONCLUSIONS 
1) All the three model hindcast sets indicate very good skill for the first week, and relatively good skill for the 2nd week 
over the tropics, but dramatically decreased skill for weeks 3 and 4 except the equatorial Pacific and maritime continent. 

2) The ECMWF hindcast demonstrates noticeably better skill than the other two, especially for weeks 3 and 4. 

3) The predictability of sub-monthly precipitation appears to connect with intra-seasonal MJO phase/strength and low-
frequency ENSO variability. 

Acknowledgments: We are grateful to the provision of the three EPS hindcast data sets, from the Japanese Meteorological 
Agency, the National Centers for Environmental Prediction, and the European Centre for Medium-range Weather Forecasts. 

                  

. 

The prediction skill of precipitation over sub-monthly time scale is investigated based on hindcasts from three global 
ensemble prediction systems (EPS). The results valid for up to four weeks indicate good skill or predictability over 
some regions during the boreal summer monsoon season (e.g., June through September), particularly over southeastern 
Asia and the maritime continent. The hindcasts from all the three models correspond to high predictability over the first 
week compared to the following three weeks. The ECMWF forecast system tends to yield higher prediction skill than 
the other two systems, in terms of both anomaly correlation and mean squared skill score. 
 
The sources of sub-monthly predictability are examined over the maritime continent with focus on the intra-seasonal 
MJO and interannual ENSO phenomena. Rainfall variations for neutral-ENSO years are found to correspond well with 
the dominant MJO phase, whereas for moderate/strong ENSO events, the relationship of rainfall anomaly with MJO 
appears to become weaker, while the contribution of ENSO to the sub-monthly skill is substantial. However, there is 
exception that if a moderate/strong MJO event propagates from Indian Ocean to the maritime continent during typical 
ENSO years, the MJO impact can become overwhelming, regardless of how strong the ENSO event is. These results 
support the concept that “windows of opportunity” of high forecast skill exist as a function of ENSO and the MJO in 
certain locations and seasons, that may lead to subseasonal to seasonal forecasts of substantial societal value in the 
future. 

Evaluation of Sub-monthly Forecast Skill from Global Ensemble Prediction Systems 
Shuhua Li and Andrew W. Robertson 

International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, NY 10964 
(shuhua@iri.columbia.edu) 

A13E–0259 

FIGURE 4: Real-time MJO phase space 
during June 1 to Sept. 30 for 2002 (El Nino) 
and 2001(neutral-ENSO). 

  

MJO phase: Jun – Sep, 2002 & 2001 

• Hindcasts of precipitation from three global ensemble prediction systems over the common period 1992-2008:  
  JMA long-range forecasting model, NCEP CFS version 2, and ECMWF integrated forecast system (IFS). 
• Horizontal resolution: approximately 1.125, 0.94, 0.5 degrees; and ensemble size: 5-4-5, respectively. 
• CMAP precipitation data from NOAA Climate Prediction Center. 
• Two skill metrics – Anomaly Correlation Coefficients (ACC) and Mean Square Skill Score (MSSS). 

Linkage: Precip versus ENSO and MJO 
FIGURE 3: (a) Anomaly correlation between 
CMAP pentad precipitation and 5-day average 
Real-time Multi-variate MJO (RMM) during June 
to August, 1992-2008. It demonstrates high 
(negative) correlation of rainfall with RMM 
components over the maritime continent.  
(b) Correlations between ECMWF precipitation 
hindcast for week-3 and CMAP rainfall during 5 
ENSO years (top) and 5 neutral years (bottom). 
The impact of ENSO on rainfall predictability is 
manifested by the comparison in the tropics, in 
particular over the equatorial Pacific and the 
maritime continent. 

Precip time-series: ECMWF hindcast vs CMAP 

FIGURE 5: Time series of rainfall anomalies over a portion of  
Borneo Island, from CMAP precipitation data (blue) and ECMWF 
hindcast (red), valid for weeks 2 and 3 during Jun-Sep for El Nino 
year 2002 and neutral-ENSO year 2001, respectively. The single 
upper-case letters denote the dominant MJO phase sector (A, I, M, 
P for MJO phase 8-1, 2-3, 4-5, and 6-7, respectively), where the 
MJO strength is greater than 1.0.  

Global EPS and Precipitation Data 

FIGURE 1: Correlation skill maps of precipitation hindcasts from the 
ECMWF forecast system over the period 1992–2008. The ACC 
calculations are made based on all the starts during late May through 
mid-September, and valid for weeks 1-4. Among the three global EPS, 
the ECMWF displays generally higher ACC skill than the other two 
systems, especially over the tropics and the maritime continent for 
weeks 2-4, as shown below. 

ACC Skill Map from ECMWF: Precipitation 
Hindcasts (weeks 1-4) and CMAP Data 

FIGURE 2: Aggregate ACC skill from three EPS hindcasts 
over the tropics and southeastern Asia  
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ENSO & MJO Precipitation Teleconnections

Figure 5: Correlation between CMAP precipitation and Nino3.4 index for June-July-August,

1992–2008, with a 95% significance mask.

41

Figure 7: Correlation between CMAP pentad precipitation and 5-day mean Real-time Multi-

variate MJO (RMM) components, RMM1 and RMM2, during June–August, 1992–2008, with

a 95% significance mask.

43

Jun–Aug 
Anomaly correlation coefficient

Niño 3.4 Index MJO RMM Indices

Li and Robertson (2015)•  Both MJO and ENSO play a role



MJO Forecast Horizon now reaches up to 4 weeks ahead

Vitart (2017, QJ)



MJO Teleconnections (S2S re-forecasts)

NAO Index: mean=0,  std=1.02

ISAC 0.25NCEP  0.32CMA 0.14 HMCR 0.13 

EI   0.48

BoM 0.15

ECMWF 0.31CNRM 0.15 JMA 0.22UKMO 0.29 ECCC 0.21 

<–40m –40m – –30 –30m – –20 –20m – –10 –10m – 0

0 – 10 10 – 20 20 – 30 30 – 40 >40m

Z500 anomalies 10 days after an MJO in Phase 3

Vitart (2017, QJ)



Assessment of sub-seasonal predictability and 
 probabilistic prediction skill over the U.S. 

Andrew W Robertson, Nicolas Vigaud, Lei Wang and Michael Tippett 
 

 International Research Institute for Climate and Society (IRI), Columbia University, Palisades, NY

Observed TeleconnectionsIntroduction

Week 3-4 Anomaly Corr. Skill

Forecast Calibration & MME

Conclusions
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Figure 3. Same as Fig. 1 but for 500hPa geopotential height.  
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Figure 1. Week 3&4 anomaly correlation coefficient (CORA) for total precipitation 
(Prcp), for both ECMWF (left) and NCEP (right) models.  Contour interval is 0.1 and 
hereafter for all CORA maps. 
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Figure 2. Week 3&4 anomaly correlation coefficient (CORA) for 2m Temperature (T2m), 
for both ECMWF (left) and NCEP (right) models.  
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Figure 3. Same as Fig. 1 but for 500hPa geopotential height.  
 

Precipitation (DJF)

Temperature (DJF)

Z500 (DJF)

• Correlations between model week 3–4 hindcasts 
and GCPC and ERA-interim (T & Z500) data.

• Skill is comparable in both models.

• Precipitation skill is highest south of 30N, with 
some skill over the NE and NW U.S.

• Temperature skill is highest over Oceans and 
south & east U.S.

• Lobe of high skill in Z500 corresponds well with 
skillful areas in precip. and temperature.

NMME/SubX Science Meeting, 13–15 Sept 2017, College Park, MD

Precipitation correlations (DJF)
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Figure 4. Maps of DJF CORA between dekadal (10-day) mean GPCP total precipitation 
and (a) Nino3.4 index, (b) NAO index, and (c) PNA index. 
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Figure 5. Maps of DJF CORA between dekadal (10-day) mean ERA-Interim T2m and (a) 
Nino3.4 index, (b) NAO index, and (c) PNA index. 
 

 

Temperature correlations (DJF)

N34 NAO

PNA

N34 NAO

PNA

• Maps are computed with dekadal averages with 
the seasonal cycle subtracted.

• Both observed precip. and temperature exhibit 
high correlations with all 3 indices south of 30N, 
and moderate correlations over the NE U.S.

• Temperature correlations are higher, consistent 
with higher skill.

Week 3–4 ACC skill (DJF)

How well do the models predict low frequency 
teleconnection modes? 

• Skill is highest in winter, lowest in summer.

• Both models have skill exceeding 0.5 for both 
NAO and PNA.

Is the skill due to seasonal or sub-seasonal 
variability?

• Sub-seasonal part is isolated by subtracting 
seasonal averages. 

• PNA skill is mostly sub-seasonal.

• NAO skill is both seasonal and sub-seasonal.

• Both models have comparable sub-seasonal skill.

Mul$-Model	Ensembling	of	S2S	forecasts	over	the	US	
	

N.	Vigaud,	A.W.	Robertson,	M.K.	Tippe9	
	

Interna(onal	Research	Ins(tute	for	Climate	&	Society,	Earth	Ins(tute,	Columbia	University	(New	York)	

2)	Extended	Logis$c	Regression	(ELR)	model	
	

	

1)	Methodology	&	metrics	

	

Objec$ve:	Produce	weekly	precipita(on	terciles	probabili(es	forecasts	using	a	subset	of	the	
S2S	Database	(WMO,	2013)	(hKp://iridl.ldeo.columbia.edu/SOURCES/.ECMWF/.S2S/)	
	

Methodology:	
		

4)	Conclusions	
	

ELR-based	 forecasts	 have	 good	 reliability	 but	 low	 sharpness	 at	 a	 week	 lead,	 while	 skill	
drops	 aKer	 two	 weeks	 and	 from	 winter	 to	 summer.	 The	 MME	 has	 more	 skill	 than	
individual	 models.	 Week	 3-4	 outlooks	 are	 more	 skillful	 than	 weekly	 averages,	 with	
significant	rela$onships	to	ENSO	and	the	MJO,	par(cularly	in	winter	over	the	southwest	US.	

REFERENCES:	 Barnston,	 A.,	 and	 R.	 Livesey	 (1987)	 A	 high	 resolu(on	 rotated	 EOF	 analysis	 of	 monthly	 and	 seasonally	 averaged	 700	mb	
heights.	 Mon.	 Wea.	 Rev.,	 115,	 1083–1126;	 Wilks,	 D.	 (2009),	 Extending	 logis(c	 regression	 to	 provide	 full	 probability	 distribu(on	 MOS	
forecasts,	Meteor.	Appl.,	16,	361–368;	Wilks,	D.,	and	T.	Hamill	(2007),	Comparison	of	Ensemble	MOS	methods	using	GFS	reforecasts,	Mon.	
Wea.	 Rev.,	 135,	 2379–2390;	 World	 Meteorological	 Organiza(on	 (2013)	 Sub-seasonal	 to	 Seasonal	 predic(on,	 pp63,	 Geneva;	 Zhang,	 C.	
(2013),	Madden	Julian	Oscilla(on:	bridging	weather	and	climate,	Bul.	Amer.	Meteor.	Soc.,	94,	1849–1870,	doi:10.1175/BAMS-D-12-00026.1	
	

Measures	 of	 skill:	 tercile	 probabili(es	 forecasts	 with	 starts	 in	 JFM	 &	 JAS	 are	 verified	
separately	 out-of-sample	 for	 predictability	 applica(ons	 using,	 reliability	 diagrams	 and	
Ranked	Probability	Skill	Scores.	

3)	Mul$-Model	Ensemble	forecasts	
	

For	 each	 lead	 and	 weekly	 start,	 terciles	 are	 defined	 using	 3-week	 windows	 around	 the	
target	week	for	which	separate	forecasts	equa(ons	are	fiKed.	Forecasts	are	 issued	only	 if	
the	lower	tercile	is	non-zero	(i.e.	dry	mask	in	Fig.	3	boKom	panel).		

Fig.4:	 JFM	RPSS	 for	week3+4	MME	 forecasts	 (lei)	and	
correla(on	paKerns	for	JFM	RPSS	PC1	(right).		

Weekly	MME	forecasts	are	characterized	by	good	probabilis(c	reliability	but	low	sharpness	
(Fig.2	lei).	Skill	drops	aier	two	weeks	lead	and	from	winter	to	summer	(Fig.	3).		

Fig.2:	JFM	Reliability	diagrams	for	each	tercile	from	weekly	MME	forecasts	at	1-	to	4-week	lead	(lei)	and	
week3+4	forecasts	from	individual	models		and	their	MME	(right)	over		land		areas	between	[20-50oN].		

The International Research Institute
for Climate and Society
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(Wilks and Hamill , 2007; Wilks , 2009) has the advantage to lead to mutually con-32

sistent individual threshold probabilities. Ultimately, these allow producing not just33

finite sets of threshold probabilities but rather full forecast probabilities distribution.34

In the following, ELR are here used to produce rainfall terciles probabilities from35

ECMF, CFS and CMA S2S forecasts using start dates aligned on ECMF Mon-36

days starts for the period June 2015-July 2016, within the JFM and JAS seasons37

from the 1999-2010 period. ECMF, CFS and CMA forecasts are interpolated on38

the GPCP1DD 1-degree estimates used for training and validation. The method-39

ology consists in the following triptych: (1) ELR model trained independantly for40
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	 													 			with		

	
	

at	weekly	resolu(on	(3-week	averaged	terciles)	
	
	

	
	and	

	
	
Introducing	the	func(on	g(q)	yields	to	consistent	sets	of	
forecasts	(Wilks	and	Hamill,	2007;	Wilks,	2009),	i.e.	
parallel	lines	at	different	leads	in	Fig.	1.	

1 Introduction18

2 Data and Methods19

2.1 Observation and S2S data20

2.2 Extended Logistic Regression model21

Distributional or quantile regressions generally suit well probability forecasting, i.e.22

when the predictand is a probability rather than a measurable physical quantity,23

allowing to provide the conditional distribution of a response variable given a set24

of explanatory predictors. In this context, logistic regression can be seen as a re-25

duced form in which the predictand is a quantile of the forecast Probability Density26

Function (PDF) as follow:27

ln

"
p

1� p

#

= f(x) (1)

where p is the probability of not exceeding the quantile q such as28

p = Pr{V  q} (2)

Extending this definition by using a non-decreasing link function g itself function of29

the quantile q then considered as one of the predictands can be formulated as below:30

ln

"
p

1� p

#

= f(x) + g(q) (3)

As shown by Wilks (2009), this definition of Extended Logistic Regressions (ELR)31

(Wilks and Hamill , 2007; Wilks , 2009) has the advantage to lead to mutually con-32

sistent individual threshold probabilities. Ultimately, these allow producing not just33

finite sets of threshold probabilities but rather full forecast probabilities distribution.34

In the following, ELR are here used to produce rainfall terciles probabilities from35

ECMF, CFS and CMA S2S forecasts using start dates aligned on ECMF Mon-36

days starts for the period June 2015-July 2016, within the JFM and JAS seasons37

from the 1999-2010 period. ECMF, CFS and CMA forecasts are interpolated on38

the GPCP1DD 1-degree estimates used for training and validation. The method-39

ology consists in the following triptych: (1) ELR model trained independantly for40

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a)MME JFM Below normal Class

Forecast frequency

O
bs

er
ve

d 
fre

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b)MME JFM Normal Class

Forecast frequency
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
c)MME JFM Above normal Class

Forecast frequency
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
a)Week3+4 JFM Below normal Class

Forecast frequency

O
bs

er
ve

d 
fre

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b)Week3+4 JFM Normal Class

Forecast frequency
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
c)Week3+4 JFM Above normal Class

Forecast frequency

The International Research Institute
for Climate and Society

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a)MME JFM Below normal Class

Forecast frequency

O
bs

er
ve

d 
fre

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b)MME JFM Normal Class

Forecast frequency

1 2 3 4 5 6 7 8 9 10
0

50

100

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
c)MME JFM Above normal Class

Forecast frequency

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a)Week3+4 JFM Below normal Class

Forecast frequency

O
bs

er
ve

d 
fre

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b)Week3+4 JFM Normal Class

Forecast frequency
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
c)Week3+4 JFM Above normal Class

Forecast frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4 Jul 1999 A class

Mean Predicted Values

Fr
ac

tio
n 

of
 P

os
iti

ve
s

 

 
Week1
Week2
Week3
Week4

M
M
E	
W
ee
kl
y	

W
ee
k	
3+
4	

More	skill	for	week	3+4	
horizons	

		
	

Increased	gain	for	MME	
compared	to	individual	

forecasts	

0 0.5 1
0

0.2

0.4

0.6

0.8

1
999−2010 MME  Xval Below normal class

Forecast frequency

O
bs

er
ve

d 
fre

qu
en

cy

 

 
MME Week3+4
ECMF Week3+4
CFS Week3+4
CMA Week3+4

JF
M
	

Below	 Normal	 Above	

Week	3+4	outlooks	

0 0.5 1
0

0.2

0.4

0.6

0.8

1
999−2010 MME  Xval Below normal class

Forecast frequency

O
bs

er
ve

d 
fre

qu
en

cy

 

 
MME Week3+4
ECMF Week3+4
CFS Week3+4
CMA Week3+4

The International Research Institute
for Climate and Society

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a)MME JFM Below normal Class

Forecast frequency

O
bs

er
ve

d 
fre

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b)MME JFM Normal Class

Forecast frequency

1 2 3 4 5 6 7 8 9 10
0

50

100

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
c)MME JFM Above normal Class

Forecast frequency

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a)Week3+4 JFM Below normal Class

Forecast frequency

O
bs

er
ve

d 
fre

qu
en

cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b)Week3+4 JFM Normal Class

Forecast frequency
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
c)Week3+4 JFM Above normal Class

Forecast frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4 Jul 1999 A class

Mean Predicted Values

Fr
ac

tio
n 

of
 P

os
iti

ve
s

 

 
Week1
Week2
Week3
Week4

M
M
E	
W
ee
kl
y	

W
ee
k	
3+
4	

More	skill	for	week	3+4	
horizons	

		
	

Increased	gain	for	MME	
compared	to	individual	

forecasts	

0 0.5 1
0

0.2

0.4

0.6

0.8

1
999−2010 MME  Xval Below normal class

Forecast frequency

O
bs

er
ve

d 
fre

qu
en

cy

 

 
MME Week3+4
ECMF Week3+4
CFS Week3+4
CMA Week3+4

JF
M
	

Below	 Normal	 Above	

Week	3+4	outlooks	

W
ee
k	
3+
4	

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4 Jul 1999 A class

Mean Predicted Values

Fr
ac

tio
n 

of
 P

os
iti

ve
s

 

 
Week1
Week2
Week3
Week4

W
ee
kl
y	
M
M
E	

	

Pooling	together	week	3+4	leads	(Fig.4	right),	using	a	6-week	window	for	terciles	defini(on	
and	ELR	model	training,	increases	skill	compared	to	weekly	forecasts	(Fig.3	lei).	
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Fig.1:	 Regressions	 of	 Aug	 9th	 1999	
ECMWF	hindcasts	at	[13.5oN;91.5oW]	
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JFM	RPSS	PC1	

RPSS	PC1	resembles	correla$on	paVerns	between	weekly	GPCP	and	Niño3.4	/	MJO	RMM2		

MME	RPSS	 NINO3.4	 RMM1	 RMM2	 MJO	

JFM	mean	 0.15*	 0.02	 0.14*	 0.14*	

JFM	PC1	 -0.45*	 -0.13	 -0.28*	 0.32*	

JFM	RPSS	PC1	is	correlated	to	Niño3.4	&	MJO	RMM2		

(*	indicate	scores	significant	at	95%	level	using	Monte	Carlo	simula>ons)	

More	skill	over	SW	US	for	El	Niño	
when	TNH	prevails	with	more	southerly	
storm	tracks	(Barnston	&	Livesey,	1987;	

Monteverdi	&	Null,	1998)	
	

Rela$onships	to	RMM2	consistent	
with	MJO	modula.ons	of	atmospheric	

rivers	(Zhang,	2013)	Table	 1:	 Correla(ons	 between	 JFM	 Week	 3-4	 RPSS	 and	
Nino3.4/MJO	RMMs	(*	indicate	significance	at	90%	level).	

Week3+4	 MME	 outlooks	 have	 more	 skill	
than	 weekly	 averages.	 Their	 RPSS	 mean	
and	 PC1	 (Fig.	 4	 lei)	 are	 related	 to	 ENSO,	
with	more	skill	over	the	SW	US	for	El	Niño	
consistent	 with	 a	 prevailing	 TNH	 paKern	
and	 more	 southerly	 storm	 tracks	
(Barnston	 &	 Livesey,	 1987).	 Rela(onships	
to	RMM2	agree	with	MJO	modula(ons	of	
atmospheric	rivers	(Zhang,	2013).	

Fig.3:	RPSS	for	weekly	MME	forecasts	at	1-	to	4-week	lead	from	starts	in	JFM	(top)	and	JAS	(boKom).	

ECMWF/NCEP/CMA	week	1-4	
(interpolated	on	GPCP1DD	grid)	

Forecasted	
precipita$on	

tercile	
probabili$es	

MME	
	

ELR	model	
	

At	weekly	resolu$on	over	the	1999-2010	period	
(based	on	ECMWF	Mondays	starts)	

JAS	1999	GPCP1DD	 GPCP1DD	terciles	

(Weeks)	

For	each	point	
start	&	lead	

Weekly	terciles	
defined	by	3-week	
averages	centered	
on	the	target	week	
(out-of-sample)	

GPCP1DD	precipita$on	
(daily,	1ox1o)		

Methodology	

Point	Sta>s>cs	
@	[13.5oN;91.5oW]	

JFM	Week	3-4	RPSS	 JFM	RPSS	PC1	

We apply extended logistic regression to construct 
calibrated sub-seasonal probabilistic forecasts, and 
average the forecast probabilities from 3 models to 
obtain a multi-model combination.
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FIG. 7. Week 3-4 reliability diagrams for the below and above normal categories from ECMWF (black),

NCEP (red) and CMA (green) forecasts with starts in JFM together with their mulrti-model ensemble (MME, in

blue). The frequencies with which each category is forecasted are indicated as bins centered on integer multiple

of 0.10 in histograms plotted under the respective tercile category diagram for each forecast in their respective

colors. The bins are projected along the same x-axis (forecast probabilities from 0 to 1) and scaled from 0 to

100%. Note that only bins with more than 1% of the total number of forecasts in each category are plotted.

Diagrams are computed for all points over continental North America between 20 and 50�N latitudes.
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Precipitation RPSS Skill for JFM Starts 

Methodology
1. Anomaly correlation skill of week 3-4 averages: 

ECMWF reforecasts from all the Monday and 
Thursday start dates in DJF are used; 3-day 
lagged ensembles are used for the CFSv2. 

2. Pattern correlations of observed fields with 
observed NAO, PNA and Nino 3.4 indices, using 
dekadal averages.

3. Calibrated probabilistic forecasts using extended 
logistic regression based on Monday starts 
during JFM, and simple equal-weight MME. The 
training/validation is with leave-one-year-out 
cross validation. 

4. All analyses are based on ensemble means.

The subseasonal predictability of precipitation and 
temperature is examined for two global ensemble 
prediction system reforecast sets from the S2S 
Database, 1999–2010 (ECMWF VarEPS and NCEP 
CFSv2).

Model teleconnection skill
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Fig. 9. Week-3&4 CORA and the subseasonal components for ECMWF (blue) and NCEP 
(red) AO, NAO, and PNA indices. Any CORA greater than 0.3 (0.2) is statistically 
significant at the 99% (95%) confidence interval by a one-tailed t-test. 
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Fig. 9. Week-3&4 CORA and the subseasonal components for ECMWF (blue) and NCEP 
(red) AO, NAO, and PNA indices. Any CORA greater than 0.3 (0.2) is statistically 
significant at the 99% (95%) confidence interval by a one-tailed t-test. 
 
 
 

• Good probabilistic skill at week 2 (days 8–14), 
especially in the multi-model combination.

• The MME improves the positive skill of the best 
model and largely removes negative skill values 
in individual forecasts. 

• The skill is near-zero at week 3–4 lead; it is 
nonetheless higher than just the week 3 skill (not 
shown)

• Clear wintertime week 3–4 anomaly correlation 
model skill in PNA and NAO indices, as well as in 
geopotential height and surface fields.

• The PNA-related skill appears to be largely sub-
seasonal, while the NAO skill has both sub-
seasonal and seasonal components.

• Extended logistic regression plus multi-model 
combination produces well-calibrated and skillful 
probabilistic forecasts at week 2.

Week	1	

EC
M
W
F	

Week	2	 Week	3	 Week	4	

N
CE

P	
CM

A	
M
M
E	

(a)	 (b)	 (c)	 (d)	

(e)	 (f)	 (g)	 (h)	

(i)	 (j)	 (k)	 (l)	

(m)	 (n)	 (o)	 (p)	

FIG. 5. Ranked Probability Skill Scores (RPSS) for ECMWF (a-d), NCEP (e-h) and CMA (i-l) terciles

precipitation forecasts as well as their multi-model ensemble (MME, m to p) for starts during the JFM season.

The different columns correspond to different leads from one to four weeks.
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FIG. 8. Ranked Probability Skill Scores (RPSS) for raw (a and b) and smoothed (c and d) week 3-4 outlooks

from the multi-model ensemble (MME) of ECMWF, NCEP and CMA terciles precipitation forecasts for all

starts during the JFM and JAS seasons. Raw and smoothed forecasts are both verified against raw observation

data (i.e. unsmoothed).
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FIG. 7. Week 3-4 reliability diagrams for the below and above normal categories from ECMWF (black),

NCEP (red) and CMA (green) forecasts with starts in JFM together with their mulrti-model ensemble (MME, in

blue). The frequencies with which each category is forecasted are indicated as bins centered on integer multiple

of 0.10 in histograms plotted under the respective tercile category diagram for each forecast in their respective

colors. The bins are projected along the same x-axis (forecast probabilities from 0 to 1) and scaled from 0 to

100%. Note that only bins with more than 1% of the total number of forecasts in each category are plotted.

Diagrams are computed for all points over continental North America between 20 and 50�N latitudes.
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FIG. 7. Week 3-4 reliability diagrams for the below and above normal categories from ECMWF (black),

NCEP (red) and CMA (green) forecasts with starts in JFM together with their mulrti-model ensemble (MME, in

blue). The frequencies with which each category is forecasted are indicated as bins centered on integer multiple

of 0.10 in histograms plotted under the respective tercile category diagram for each forecast in their respective

colors. The bins are projected along the same x-axis (forecast probabilities from 0 to 1) and scaled from 0 to

100%. Note that only bins with more than 1% of the total number of forecasts in each category are plotted.

Diagrams are computed for all points over continental North America between 20 and 50�N latitudes.
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Reliability diagram for JFM Starts 

• Reliability is 
notably 
increased by 
the multimodel 
combination
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Stratosphere
Neutral Stratospheric Vortex

Weak Stratospheric Vortex

SPARC-SNAP

Prediction skill of the 1000 hPa Northern Annular 
Mode for week 3 in the S2S models 

For most models, skill is higher following weak 
vortex conditions. Similar results are found 

following strong vortex conditions.  



Summary

• Multiple sources of predictability on the 2 weeks to a season range


• Phenomena/modes of variability: Blocking, MJO, SSWs, NAO, ENSO, 
QBO, … 


• Slowly varying atmospheric boundary conditions: soil moisture, snow 
cover/snow pack, sea ice, SST, …


• S2S Phase II will target Land, Ocean, Stratosphere, Aerosols  


