Overview of the (PACCSAP) Pacific Climate Change Science Program

First Meeting of the Steering Committee for the INDARE Initiative, WMO Geneva
29 Sep-01 Oct 2014

Geoff Gooley

......on behalf of PACCSAP Science Program (CSIRO & Bureau of Meteorology), incl. collaborative partners in Australia & the Pacific

Pacific-Australia Climate Change Science and Adaptation Planning Program
Presentation Outline

• Overview - PACCSAP Science Program
• Overview - new science, tools, communication & capacity development
• Decision-centred approach to adaptation
• Delivering climate science-based evidence
• Data and information management
• The future
PCCSP/PACCSAP Science

• Pacific Climate Change Science Program (PCCSP)
 – ~$20m over ~ 3 yrs (2008/09-2010/11)

• Pacific – Australia Climate Change Science & Adaptation Planning (PACCSAP) Science Program
 – ~$20m over ~ 3 yrs (2011/12-2013/14)

• Funded & administered by Australian Government (DFAT & DotE)

• Delivered by Centre for Australian Weather & Climate Research (CAWCR):
 – partnership between CSIRO and Bureau of Meteorology

• 15 diverse partner countries & numerous regional organisations and universities incl. SPREP, SPC, USP, Red Cross and GIZ

• Other Australian agencies: Geoscience Australia, ARC Centre of Excellence for Climate System Science
PCCSP/PACCSAP Science

• Regional focus on 14 Pacific Island Countries (PICs) + E. Timor
 – key stakeholders - National Met Services
• Response to considerable PIC needs (demand driven, next/end user focus)
• Data/information (knowledge), tools and capacity to facilitate decision-making & associated pathways to adaptation
PACCSAP Science – strategic drivers

• PACCSAP – two components:
 – Adaptation Component (Dept of the Environment)
 – Science Component (CSIRO & BOM)

• PACCSAP goal & objective:
 – PICs developed capacity to monitor & adapt to changing natural environment, & enhanced resilience to impacts of CC
 – Emphasis on PIC scientists, decision-makers & planners to apply info/tools & develop in-country responses

• PACCSAP Science component objective:
 – Primary: Improve scientific understanding of climate change in the Pacific
 – Together with DotE:
 • Increased awareness of climate science, impacts and adaptation options
 • Better adaptation planning to build resilience to climate change impacts
PACCSAP Science Program - Scope

• New science
 – Seasonal predictions & climate data (n.b. data rescue, digitisation & CliDE)
 – Large-scale climate features & variability
 – Regionally specific projections & extreme events
 – Ocean processes

• Tools development & technical support
 – Pacific Climate Futures
 – CliDE
 – Data portals

• Communication products
 – Technical Report
 – Synthesis Report
 – Journal papers, animations, fact sheets, training resources

• Capacity development
 – Mentoring & attachments
 – Technical training
 – Workshops, conferences, symposia
 – Networking & relationship management
New science/new products

• Climate variability, extremes and change in the western tropical Pacific: new science and updated country reports......(BOM & CSIRO, 2014)

• Technical report, country specific chapters:
 – Climate summary
 – Data availability
 – Seasonal cycles
 – Observed trends
 – Climate projections (CMIP5)

• On-line publication
 http://www.pacificclimatechangescience.org
Historical and simulated annual average temperature and rainfall time series for the region surrounding Northern Cook Islands for the CMIP5 models under the very high emission (RCP8.5 very high emissions) and very low emission (RCP2.6) scenarios.
Technical Report – sea level rise observations & projections

Observed and projected relative sea-level change near the Cook Islands
Projected percentage change in cyclone frequency in the south-east basin for 22 CMIP5 climate models, based on five methods, for 2080–2099 relative to 1980–1999 for RCP8.5.
Wave climate description in the historical-current context is developed from a hindcast made by forcing a wave model with reanalysis winds (left), while projected changes are made by forcing the wave model with CMIP5 model winds and looking at the change in wave properties between historical and future time slices (right).

Region of validated high-resolution 30-year wave hindcast, showing a global 0.4 degree grid, with a series of nested grids of 10 and 4 arcminutes (~18 & 7 km respectively) in the western tropical Pacific.
Projected decreases in aragonite saturation state in the Cook Islands from CMIP5 models under RCP2.6 (very low emissions), 4.5 and 8.5.

<table>
<thead>
<tr>
<th>Temperature change ¹</th>
<th>Recurrence interval²</th>
<th>Duration of the risk event³</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change - Observations</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+0.25° C</td>
<td>30 years</td>
<td>4 weeks</td>
</tr>
<tr>
<td>+0.5° C</td>
<td>28.2 years (27.4 years – 29.9 years)</td>
<td>4.7 weeks (4.5 weeks – 4.9 months)</td>
</tr>
<tr>
<td>+0.75° C</td>
<td>6.6 years (1.6 years – 14.4 years)</td>
<td>6.7 weeks (3.3 weeks – 9.8 months)</td>
</tr>
<tr>
<td>+1° C</td>
<td>2.7 years (5.2 months – 7.5 years)</td>
<td>10.6 weeks (2.5 weeks – 3.8 months)</td>
</tr>
<tr>
<td>+1.5° C</td>
<td>10.9 months (2.1 months – 2.7 years)</td>
<td>3.6 months (2.9 weeks – 6.3 months)</td>
</tr>
<tr>
<td>+2° C</td>
<td>6.5 months (1.8 months – 1.4 years)</td>
<td>6.0 months (6.1 weeks – 8.2 months)</td>
</tr>
</tbody>
</table>

Projected changes in severe coral bleaching risk for the Northern Cook Islands EEZ for increases in SST relative to 1982–1999.
New science/new products

- Climate Change in the Pacific: A Regional Summary of New Science and Management Tools (CSIRO, BoM & SPREP, in prep)
 - Plain language report: “telling the story of the science”...
 - Targeted at non-technical audience in the Pacific, incl:
 - Sectoral policy makers, planners & associated decision-makers
 - National/sub-national to community level
 - Regional context but with PIC perspectives:
 - Understanding changing climate in the Pacific
 - About the science – climate data, modelling, projections & RCPs, uncertainty, confidence, downscaling
 - Large-scale climate features
 - Temperature, rainfall, oceans, tropical cyclones
 - Climate science tools
 - On-line publication (http://www.pacificclimatechangescience.org)
Tools, Communication and Outreach Products

• **Existing:**
 – Enhanced development of CliDE and data portals
 – >35 peer reviewed journal papers incl. partner country co-authorships (+ PCCSP!!), IPCC AR5 (WG 1 & 2) reporting + misc. other reports and databases
 – Animations:
 • *Climate Crab - regional*
 • *Cloud Nasara - Vanuatu*

• **New:**
 – Pacific Climate Futures V2.0 (*n.b. PVUDP*)
 – Technical Report:
 • New Science & updated Country Reports

• **Pending:**
 – Summary Report (for policy makers; non-Technical)
 – Training materials, Fact Sheets & new country brochures (non-Technical)
CliDE: Climate Data for the Environment

CliDE Development - Climate Database Login

You are logged on as clide

User Settings
Products
Keyboard Data Entry
Data File Ingestion
Data Quality Assurance
System Maintenance
Codes Maintenance
User Administration
Records Management

doi: 10.1002/met.1461

cliDE is now installed and training provided to met services in 14 Pacific Island Countries plus East Timor
- now used operationally for data storage and management
- Visualisation/applications (CLEWS) through CliDEsc (NIWA).
Data rescue & digitisation

Table 1 - Number of daily records key-entered during this project (to 31 May 2013)

<table>
<thead>
<tr>
<th>Type</th>
<th>Country</th>
<th>Stations</th>
<th>Work Estimate</th>
<th>Work Done</th>
<th>% Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>daily</td>
<td>Cook Islands</td>
<td>6</td>
<td>27466</td>
<td>7574</td>
<td>28</td>
</tr>
<tr>
<td>daily</td>
<td>Kiribati</td>
<td>5</td>
<td>57518</td>
<td>19898</td>
<td>35</td>
</tr>
<tr>
<td>daily</td>
<td>Niue</td>
<td>7</td>
<td>19710</td>
<td>4982</td>
<td>25</td>
</tr>
<tr>
<td>daily</td>
<td>PNG</td>
<td>158</td>
<td>400040</td>
<td>287454</td>
<td>72</td>
</tr>
<tr>
<td>daily</td>
<td>Solomon Islands</td>
<td>7</td>
<td>39777</td>
<td>31503</td>
<td>79</td>
</tr>
<tr>
<td>daily</td>
<td>Timor-Leste</td>
<td>15</td>
<td>342370</td>
<td>82711</td>
<td>24</td>
</tr>
<tr>
<td>daily</td>
<td>Tonga</td>
<td>6</td>
<td>30052</td>
<td>9720</td>
<td>32</td>
</tr>
<tr>
<td>daily</td>
<td>Vanuatu</td>
<td>8</td>
<td>25915</td>
<td>25915</td>
<td>100</td>
</tr>
<tr>
<td>daily</td>
<td>Samoa</td>
<td>64</td>
<td>294555</td>
<td>389961</td>
<td>132</td>
</tr>
<tr>
<td>subdaily</td>
<td>Niue</td>
<td>3</td>
<td>19710</td>
<td>6218</td>
<td>32</td>
</tr>
<tr>
<td>subdaily</td>
<td>PNG</td>
<td>5</td>
<td>400040</td>
<td>25490</td>
<td>6</td>
</tr>
<tr>
<td>subdaily</td>
<td>Solomon Islands</td>
<td>7</td>
<td>30660</td>
<td>41353</td>
<td>135</td>
</tr>
<tr>
<td>subdaily</td>
<td>Timor-Leste</td>
<td>6</td>
<td>342370</td>
<td>26026</td>
<td>8</td>
</tr>
<tr>
<td>subdaily</td>
<td>Tonga</td>
<td>5</td>
<td>11862</td>
<td>11862</td>
<td>100</td>
</tr>
<tr>
<td>subdaily</td>
<td>Vanuatu</td>
<td>8</td>
<td>25915</td>
<td>25915</td>
<td>100</td>
</tr>
<tr>
<td>subdaily</td>
<td>Samoa</td>
<td>52</td>
<td>294555</td>
<td>142954</td>
<td>49</td>
</tr>
</tbody>
</table>

Table 2 - Partner PIC trainees in digitising data into CliDE in this project

<table>
<thead>
<tr>
<th>Country</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook Islands</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>East Timor</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Kiribati</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Niue</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>PNG</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Samoa</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Solomon Islands</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Tonga</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>32</td>
<td>50</td>
</tr>
</tbody>
</table>
Climate data, tropical cyclone data and seasonal prediction of climate extremes portals

• Climate Data
• Seasonal prediction Portals
• Tropical cyclones

Important scientific and technological results have been obtained, particularly in the development of web-based information tools to provide climate data and climatic extremes forecasts in the Pacific and the Australian regions.
Causes of climate change

The Earth's climate has changed over the centuries and millennia due to a number of different factors (see Figure 9).

These include:

- Natural changes in the Earth's orbit which may occur over time scales of thousands of years
- Natural changes in the sun which affect the amount of incoming solar radiation
- Natural, large-scale volcanic eruptions which eject large amounts of ash into the atmosphere. The ash may remain in the atmosphere for several months or years reflecting sunlight back into space and resulting in a drop of mean global surface temperature
- Changes in atmospheric chemistry (such as the quantity of greenhouse gases) – both natural and caused by human activities. It is almost certain that most of the changes seen in the past century have been caused by human activities such as burning fossil fuels. We will now concentrate on these changes.

Figure 9: Factors that lead to changes in the Earth's climate.
Projections Builder: Results

These results were produced using the Pacific Climate Futures Projections Builder, based on the settings selected by the user. It is important to retain a record of those settings.

Representative Models

To identify the representative models, all models were ranked using a multivariate statistical technique (Kokic et al., 2002) to identify the model that is the best fit to the settings selected by the user for the Best and Worst cases.

In addition, where possible, the tool identifies the maximum consensus climate future (i.e. the climate future projected by at least 33% of the models and which comprises at least 10% more models than any other).

<table>
<thead>
<tr>
<th>Case</th>
<th>Representative Model</th>
<th>Consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>CMIP3 - miro3_2_hires</td>
<td>Very Low</td>
</tr>
<tr>
<td>Worst Case</td>
<td>CMIP3 - gldl_cm2_1</td>
<td>Low</td>
</tr>
<tr>
<td>Maximum Consensus</td>
<td>CMIP3 - gldl_cm2_0</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Table 1: Climate Futures description, consensus rating and representative model for each of the three cases: Best, Worst and Maximum Consensus.

<table>
<thead>
<tr>
<th>SURFACE TEMPERATURE</th>
<th>RAINFOIL ANNUAL</th>
<th>RAINFOIL ANNUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Case</td>
<td>3.23°C</td>
<td>-5.7%</td>
</tr>
<tr>
<td>Worst Case</td>
<td>2.46°C</td>
<td>31.3%</td>
</tr>
<tr>
<td>Maximum Consensus</td>
<td>2.46°C</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

Table 2: Projected changes for each of the selected variables and seasons for the three cases described in Table 1.

USING THESE PROJECTIONS

In applying these projections to an impact assessment, the results for each case should be used separately, resulting in separate statements of impact for each case.

Important: The projected changes shown in Table 2 are the results from the corresponding climate model as described in Tables 1 and 2. They represent the projected 20-year average change, calculated over the region selected and are calculated relative to the historic reference period 1965 to 2005. The projected changes are influenced concurrently by the long-term climate trend and the decade variability as simulated by the relevant climate model.

Use of these results is subject to the Pacific Climate Futures Terms of Use, as updated from time-to-time, which can be viewed at the website http://pacificclimatefutures.net.

A detailed description of the Climate Futures method can be found in Whetto et al. 2012. The use of the method in an impact assessment is described in detail in Clarke et al. 2011.

REFERENCES

Pacific Climate Futures V2.0
Pacific Climate Futures V2.0

- Marine Projections

[Graphs showing historical and simulated mean sea-surface temperature, observed SST, and maximum annual aragonite saturation state for Palau.]
New products – Pacific Climate Futures V2.0

What’s new:

– CMIP5 Data
– Downscaled data for all countries (50km resolution)
– Online training: access to Projections Builder (Intermediate capability)
– Projections Builder: guided generation of internally consistent projections data (Best, Worst and Max. Consensus cases) tailored to suit non-complex impact assessments
– Compare Projection module: contextualise results from multiple sources (e.g. Downscaling, CMIP3, CMIP5); display changes over time
– Online access to pre-calculated, high quality sea level, SST and ocean acidification data
– Outputs applied to observed data sets (CliDE/portal) to generate application-ready climate change data (Advanced capability)

www.pacificclimatechangescience.org
www.pacificclimatefutures.net
Climate animations

- Climate Crab (regional) & Klaod Nasara

- Resource kits
New science/new products

- Climate science-based training module & associated materials, including documented ‘manual’ & ppt presentations:
 - Country specific presentations (14 x PICs + Timor-Leste)
 - Tailored for NMSs
 - Regional Pacific current/future climate
 - Understanding climate projections
 - Understanding climate variability and change
 - Tailored for more general use
 - ppt presentation templates to facilitate ‘small group’ discussions
 - Tailored for more general use
Fact Sheets (http://www.pacificclimatechangescience.org):

- Climate variability & change
- Large-scale climate processes
- Climate extremes
- Sea-level rise
- Ocean acidification
Understanding past and current climate observations and trends, and future climate change scenarios is central to analysing climate risks, including hazard identification and vulnerability/impact assessment for CCA and DRM purposes.
PACCSAP Climate Data & Information Management

- Obstacles to use of science-based evidence for CCA and DRM decision-making by end-users (modified from draft HFP ‘Science Humanitarian Dialogue 2014’):
 - Discoverability
 - Access & opportunity
 - Understanding
 - Relevance and Useability
 - Credibility and legitimacy
 - Resource limitations
 - Decision Support Systems ???

- PACCSAP Climate Data & Information Strategy
 - Climate data/metadata & info: inventory, curation & archiving (incl. fit-for-purpose QAQC standards, cataloguing, repositories & accessibility controls)
 - PACCSAP legacy and sustainability of outcomes

- Pacific iCLIM
 - Regional approach to Pacific climate data and information management
 - Griffith U and SPREP (Australian Govt funded)
 - Pacific Climate Change Portal – secure/stable regional climate data & information hub
The future

- **PACCSAP Science Program finishes in 2014**
 - New strategic benchmark in fundamental climate science for the western tropical Pacific (n.b. alignment with IPCC AR5)
 - Evaluation & final reporting: leverage off new knowledge, capacity & key learnings
- **Strategic considerations:**
 - Manage/action existing knowledge: turning outputs into outcomes = impact = compelling case for reinvestment!!
 - Plan for sustainable resilient development: mainstreaming climate adaptation & DRM:
 - Role of climate science/outreach to inform/facilitate evidence-based decision-making?
 - *GFCS innovation pathway: Today’s climate science is tomorrow’s climate service!*
 - Support in-country capacity development
 - *Coordination, collaboration, partnerships – manage relationships*
 - What are the new and emerging regional/inter-regional needs:
 - tailored/application-ready, multiple sectors, multiple risks, multiple time-frame, finer spatial scale, seamlessly interfaced to DSS!!??
Thank you

For further information

Geoff Gooley
PACCSAP Science Program
Email: geoff.gooley@csiro.au
Phone: +61 3 9239 4462