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PREFACE 

Long term instrumental climate records are the basis of climate research. However, these 

series are usually affected by inhomogeneities (artificial shifts), due to changes in the 

measurement conditions (relocations, instrumentation). As the artificial shifts often have the 

same magnitude as the climate signal, such as long-term variations, trends, or cycles, a direct 

analysis of the raw data series can lead to wrong conclusions about climate change.  

 

The Seminars for Homogenization and Quality Control in Climatological Databases are 

traditionally held in Budapest and hosted by the Hungarian Meteorological Service since 

1996. The 7th Homogenization Seminar was organized together the final meeting of the 

Management Committee of the COST Action ES0601: Advances in Homogenization 

Methods of Climate Series: an integrated approach (HOME). The COST HOME Action 

ended in October 2011 and its main objective was to review and improve common 

homogenization methods, and to assess their impact on climate time series. As one of the 

high importance achievements of the Action a benchmark dataset was generated for 

comparing monthly homogenization algorithms. The main results of this examination were 

published in the journal Climate of the Past. 

 

The jointly organized 7th Seminar and the final MC meeting was a good occasion for 

conversation between the participants of the HOME Action and other researchers of the 

homogenization community. During this meeting, publishing a special issue of the COST 

HOME Action was suggested. This publication has been realized at the Quarterly Journal of 

the Hungarian Meteorological Service: IDŐJÁRÁS, Vol. 117, No.1. 2013, as a Special Issue 

of the Action. 

 

The meeting was supported by EU/COST-ES0601 Action, WMO and OMSZ, and we hope 

that the series of Homogenization Seminars can co-operate with different other initiative for 

development of data quality with special regards to homogenization. 
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THEORETICAL ASPECTS OF HOMOGENIZATION 

Tamás Szentimrey 

Hungarian Meteorological Service, P.O. Box 38, H-1525 Budapest, Hungary 

E-mail: szentimrey.t@met.hu 

 

 

1. INTRODUCTION 

 

The theme of homogenization can be divided into two subgroups, such as monthly and daily 

data series homogenization. These subjects are in strong connection with each other of course, 

for example the monthly results can be used for the homogenization of daily data. This paper 

considers some various theoretical aspects of monthly series homogenization.  

The main topics discussed are as follows. 

‒ In case of relative methods the statistical spatiotemporal modelling of the series is a 

fundamental question. The adequate comparison, break point detection and correction 

procedures are depending on the chosen statistical model.  

‒ Adequate validation statistics are necessary for the benchmarking of homogenization 

algorithms and software. 

‒ Automation of the homogenization algorithms and software with special respect to the 

automatic usage of metadata.  

 

 

2. STATISTICAL SPATIOTEMPORAL MODELLING OF MONTHLY SERIES 

 

The aim of the homogenization procedures is to detect the inhomogeneities and to correct the 

series. In practice there are absolute and relative methods applied for this purpose. However 

the main problem of the application of absolute methods is that the separation of climate 

change signal and the inhomogeneity is essentially impossible. Relative methods can be 

applied if there are more station series given, which can be compared mutually. In this case 

the statistical spatiotemporal modelling of the series is a fundamental question. The adequate 

comparison, break point detection and correction procedures are depending on the chosen 

statistical model.  

 

 

2.1. General structure of additive models 

 

In case of relative methods a general form of additive model for more monthly series 

belonging to the same month in a small climate region can be written as follows, 

 

)()()()( ttIHEttX jjjj         .,n,, t,N ,,j  21;21 , (1) 

where )(t  is the common and unknown climate change signal, jE  are the spatial expected 

values, )(tIH j  are the inhomogeneity signals and )(tj  are normal white noise series. 

Depending on model the signal  t  can be a fixed parameter or random variable. The type of 

inhomogeneity  tIH  is in general a ’step-like function’ with unknown break points T  and 
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shifts     01  TIHTIH , and   0nIH  is assumed in general. The inhomogeneity can be 

written as linear function of the shifts,     jjj ttIH νT
T , so from model (1) the following 

form can be obtained, 

 

  )()()( T ttEttX jjjjj   νT      .,n,, t,N ,,j  21;21 , (2) 

 

where  tjT  is the vector of one break point functions, and jν  is the vector of shifts at the 

break points. 

THE ABOVE ADDITIVE (LINEAR) MODEL (2) MAY BE WRITTEN ALSO IN VECTOR 

FORM, 

 

       tttt ενTE1X           nt ,...,1  (3) 

 

 

where       tXtXt N,.....,1

T X ,  NEE ,.....,1

T E ,       ttt NN

TT

11 ,..., TeTeT  , 

 TTT

1 ,.., Nννν  ,  vector 1  is identically one, and the normal distributed vector variables 

        C0ε ,,..,
T

1 Nttt N    nt ,...,1  are totally independent in time. The spatial 

covariance matrix C describes the spatial structure of the series. 

 

 

2.2 Statistical model assumed at MASH method 

 

According to the assumption of MASH (Multiple Analysis of Series for Homogenization, 

Szentimrey, 1999, 2011), using the model (3) the signal  t  is a fixed parameter without any 

assumption about the shape, i.e. expected values are     jjjj tEttX νT
T)()(E   . The 

covariance matrix C  is also arbitrary. 

 

 

2.3 Mixed Linear Model (MLM) 

 

The Mixed Linear Model (MLM) is often applied statistical model for segmentation in 

biology and medicine (Picard et al., 2007). This model can be also formulated according to 

the model (3) where the signal  t   nt ,...,1  is assumed to be the random effect which 

models the correlations among the series, namely       G0μ ,,.....,1
T

Nn   . Further 

assumptions are that the covariance matrix C  is a diagonal matrix again and the vector 

variables μ  and     TTT ,.....,1 nεεε   are independent. However the assumptions 

 G0μ ,N  and the diagonality of matrix C  are unacceptable in case of climate series.  

 

(i), (Temporal problem). If  G0μ ,N  were true then the expected values would be 

  0)(E t   nt ,...,1  consequently we exclude the climate change in mean implicitly.   

(ii), Since vector variables μ  and ε are independent therefore the model of fixed parameter μ  

also can be applied where μ  as fixed parameter is the realization of random variable 
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 G0μ ,N . However the fixed parameter μ  without any assumption about the shape is 

more general and more adequate model for climate series than the realization of random 

variable  G0μ ,N .  

 

III, (SPATIAL PROBLEM). ACCORDING TO LEMMA1 IN CASE OF CLIMATE SERIES 

)(tX j   ,N ,,j  21  AND FOR ALL THE SUBSET )(),(),(),(
4321

tXtXtXtX jjjj  

 4231 , jjjj  ,  

     )()(var)()(var)()(var
423121

tXtXtXtXtXtX jjjjjj  , 

if C  is a diagonal matrix. 

But let us assume,   
2131 jjjj ssss    and 

2142 jjjj ssss  , 

where  
4321

,,, jjjj ssss  are the corresponding location vectors. 

Then just the opposite inequality is expected in case of climate series, i.e. 

     )()(var)()(var)()(var
423121

tXtXtXtXtXtX jjjjjj   

so the Mixed Linear Model (MLM) and the climate are in contradiction! 

 

LEMMA 1 ASSUMING MODEL (2), (3) IF C  IS A DIAGONAL MATRIX, THEN THE 

FOLLOWING STATEMENTS ARE TRUE FOR THE VARIANCES, 

(i)      )(var)(var)()(var
2121

tttXtX jjjj        21 jj   

(ii) 
     )()(var)()(var)()(var

423121
tXtXtXtXtXtX jjjjjj   

 4231 , jjjj   

 

Proof.  

( i ) 

    )()(var)()(var
2121

tttXtX jjjj   

      )(var)(),(cov2)(var
2211

tttt jjjj     )(var)(var
21

tt jj    

since    0)(),(cov
21

tt jj  , because C  is a diagonal matrix. 

 

( ii ), As it was proved at  i, 

      )(var)(var)()(var
2121

tttXtX jjjj   

        )(var)(var)(var)(var
4321

tttt jjjj   

          )(var)(var)(var)(var
4231

tttt jjjj   

and using again i, we obtain, 

   )()(var)()(var
4231

tXtXtXtX jjjj   
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2.4 Conlcusion 

 

The adequate model for inhomogeneous climate series can be formulated by (2), (3) where the 

signal  t  is a fixed parameter without any assumption about the shape and the covariance 

matrix C is also arbitrary. The MLM can be taken such a special case of this model which is 

not enough general to model the climate series.     

 

 

3. SERIES COMPARISON, BREAK POINT DETECTION, CORRECTION 

 

3.1 Methodology for comparison of series  

 

The problem of comparison of series is related to the following questions: reference series 

creation, difference series constitution, multiple comparisons of series etc. This topic is very 

important for detection as well as for correction, because the efficient series comparison can 

increase both the significance and the power. The development of efficient comparison 

methods can be based on the examination of the spatial covariance structure of data series. 

The examined series )(tX j  Nj ,...,1  have to be taken as candidate and reference series 

alike, furthermore the reference series are not assumed to be homogeneous at the correct 

examinations!  

 

The main problem arises from the fact that the shape of climate change signal is unknown. 

Therefore so-called difference series are examined in order to filter out the climate change 

signal )(t . The simple difference series between pairs are      tXtXtZ ij  . However the 

difference series constitution can be formulated in more general way as well. Assuming that 

 tX j  is the candidate series and the other ones are the reference series, then the difference 

series belonging to the candidate series can be constituted as, 

 

     tXtXtZ i

ji

jijj 


       ttIHtIH
jZi

ji

jij   


 (4) 

with condition of  1
 ji

ji  for the weighting factors. As a result of the last condition, the 

unknown climate change signal )(t  has been filtered out. Consequently the inhomogeneities 

can be detected by the examination of the above difference series.  In addition if we want to 

increase the signal to noise ratio in order to increase the power of detection then we have to 

minimize the variance of noise term  t
jZ . 

 

The covariance matrix C  uniquely determines the optimum weighting factors that minimize 

the variance, and the optimal difference series created in this manner can be applied 

efficiently for the detection and correction procedures (MASH, Szentimrey, 1999, 2011). We 

mention that in case of using the generalized-least-squares estimation for the unknown 

climate change signal  t , also the optimal difference series is obtained with minimal 

variance. We have to examine more difference series in order to separate the appropriate 

detected inhomogeneities for the candidate series. More difference series created without 

common reference series and with minimal variances can be defined as optimal difference 

series system (MASH). 
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3.2 Methodology for break point (changepoint) detection 

 

One of the basic tasks of the homogenization is the examination of more difference series in 

order to detect the break points and to attribute them for the candidate series. The key 

question of the homogenization software is to develop automatic procedures for this 

attribution problem!!! 

 

The scheme of the break point detection is as follows. Let )(tZ  be a difference series 

according to the formula (4), that is  

 

   ttIHtZ ZZ )(        .,n, t .1 , (5) 

 

where  tIHZ  is a mixed inhomogeneity of difference series )(tZ  with K  break points 

KTTT  .....21 .  In general the number K  and the position of the multiple break points 

KTTT  .....21  are unknown, furthermore the noise variables  tZ  2ZZ ,EN   

 nt ,...,1  are totally independent in time. The basic types of the detection procedures are 

the stepwise and the multiple break points detection. Let us have the following notation of the 

estimates: 
K

TTTK ˆ21
ˆ.....ˆˆ;ˆ  . 

 

The more sophisticated multiple break points detection procedures were developed for joint 

estimation of the break points. There may be different principles of these methods that are 

classical ways in mathematical statistics. 

 

 

3.2.1 Break point detection based on Bayesian Approach  

 

The methods based on Bayesian model selection are the penalized likelihood methods. These 

methods are different in the penalty terms or criterions e.g. Akaike criterion, Schwarz 

criterion, Caussinus-Lyazrhi criterion.   

 

The PRODIGE procedure (Caussinus and Mestre, 2004) based on the Caussinus-Lyazrhi 

criterion is an example for the penalized likelihood methods. 

 

 

3.2.2 Break point detection based on Test of Hypothesis 

 

Another possibility is to use hypothesis test methods for the detection of break points. At the 

MASH method (Szentimrey, 1999, 2011) a hypothesis test procedure has been developed, as 

we want to avoid the type one error that is the damage of data series. The essence of this 

multiple multiple break points detection procedure based on test of hypothesis on a given 

significance level is as follows. 

 

If the detected break points of )(tZ  are 
K

TTTK ˆ21
ˆ.....ˆˆ;ˆ  , then on the given significance 

level   p   (e.g.:  p=0.1): 

 

( i ) )(tZ  is not homogeneous above the intervals ]ˆˆ( 11 kk- T,T  because,  
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  ptZT,T kk-   shomogeneou)(: thatabove]ˆˆ(P 11  

Consequently the detected break points kT̂  are not superfluous. 

This means there is no serious type one error. 

 

( ii ) )(tZ  can be accepted to be homogeneous above the intervals ]ˆˆ( 1 kk- T,T .  

This means there is no serious type two error. 

 

Remark  

Confidence intervals are also given for the break points beside the point estimation at the 

method MASH (Szentimrey, 1999, 2011). 

 

 

3.3 Methodology for correction of series 

 

Beside the detection another basic task of the homogenization is the correction of series. 

Calculating of correction factors can be based on the examination of difference series for 

estimation of shifts     1ˆˆ  kk TIHTIH    Kk ˆ,...,1   at the detected break points. 

 

Almost all the methods use point estimation for the correction factors at the detected break 

points. For example the PRODIGE method (Caussinus and Mestre, 2004) uses the standard 

least squares technique to estimate the correction factors. Probably the generalized least 

squares estimation technique based on spatial covariance structure would be more efficient. 

 

The MASH procedure (Szentimrey, 1999, 2011) is an exception because the correction factors 

are estimated on the basis of confidence intervals. The confidence intervals given for the 

break points and shifts make possible also the automatic usage of metadata at MASH! 

 

 

3.4 Automation of methods and software 

 

One of the fundamental problems of homogenization procedures is the relation of the manual 

versus interactive or automatic methods. In the practice the simple manual methods (e.g. 

Craddock method) are very popular however these ones are unusable for the real climate 

observation networks. We have to understand the fact that a lot of stations must be examined 

together in general! The reality for the number of stations per network is more than 100 

instead of 10-15 used at COST HOME benchmark dataset. 

 

Therefore the key questions of the homogenization methods and software are, 

- firstly, the quality of homogenized data, 

- secondly, the quantity of stations. 

 

If we want to fulfill both respects it is necessary to develop automatic procedures. 

Further necessary conditions required for automation of methods and software are,  

- ability for automatic attribution of break points for the candidate series, 

- and automatic usage of metadata. 

 

To solve the above problems without advanced mathematics is impossible!!! 

 



8 

 

 

4. BENCHMARK FOR METHODS 

 

The COST Action ES0601 (HOME) has executed a blind intercomparison and validation 

study for monthly homogenization methods. The methods were tested on a realistic 

benchmark dataset. The benchmark contained simulated data with inserted inhomogeneities 

(Venema et al., 2012). Testing the methods on a generated benchmark dataset seems to be an 

objective validation procedure however we have to know also the limits of such type of 

examinations.  

 

The interpretation of benchmark results is not a trivial problem, since these are depending on 

different factors, such as: 

- tested methods (quality, manual or automatic), 

- testing benchmark dataset (quality, adequacy),  

- testers (skilled or unskilled), 

- methodology of evaluation (validation statistics). 

 

Moreover if want to obtain a real image of the methods, then the theoretical evaluation of 

their mathematical basis is also indispensible.  

We do not intend to detail the above problems but some of them are presented in the 

following sections. 

 

 

4.1 Comparison of manual and automatic methods 

 

The question of the comparison of manual methods to automatic ones seems similar to the 

comparison of handmade and factory products. Or how can we compare the results of a 

manual time consuming method with a skilled tester versus the results of an interactive 

method with an unskilled tester. The method or the user is tested if we evaluate the test 

results? 

 

 

4.2 Evaluation methodology and validation statistics 

 

The methodology of evaluation and the derivation of validation statistics is not a trivial task at 

all. The following example is a tricky problem connected with the definition of reference 

period what is still unsolved in the practice. 

 

Notations (additive model) 

Month: 12,21 .,,k  ,   year: n.,,t ,21   

Original homogeneous series (orig):    )(tX k

H       

Inhomogeneous series (inhom):  
      )()()( tIHtXtX kk

H

k

IH       

Estimated inhomogeneity series:   
  )(ˆ tHI k

  

Homogenized series (h0):    
      )(ˆ)()(ˆ tHItXtX kk

IH

k

H     

 

In the practice the generally used definition is that the reference time is n,  i.e., 
  0)(ˆ nHI k

  or  
    )()(ˆ nXnX k

IH

k

H   



9 

 

However in this case certain contradictions can be obtained. 

 

Problem 1 

Let us assume n-1 is the only one detected break, i.e., 
  )(ˆ)1(ˆ: )( nHInHIk kk   

Then the more intelligent methods do not change all the values for 1,1  n.,t . In this case 

the reference time is rather n-1 than n, and the last values are taken as outliers, since we do 

not want to damage all the series!  

Consequently the homogenized series:     )()(ˆ tXtX k

IH

k

H  )1,,1(  n.t ,
   

k

k

IH

k

H OnXnX ˆ)()(ˆ  ,   

where kÔ  are the estimation of the outliers at time n. 

 

Problem 2 

Let us assume that the benchmark data series was also defined with only one break at n-1, 
 

k

k CtIH )( )1,,1(  n.t , 
  0)( nIH k

 

Then the difference series of the homogenized and original series is: 
     

k

k

H

k

H

k CtXtXtZ  )()(ˆ)(  )1,,1(  n.t  and   
     

k

k

H

k

H

k OnXnXnZ ˆ)()(ˆ)(   

 

In this case the validation statistics as  ZRMSE ,  ZCRMSE  may be very large, opposite to 

the fact, that the “homogenization” was quite good. The contradiction is arising from the non 

trivial problem of the definition, interpretation of the reference period. 

 

 

5. SOFTWARE MASH 

 

The most important properties of MASHv3.03  

(Multiple Analysis of Series for Homogenization; Szentimrey 1999, 2008, 2011) 

 

Homogenization of monthly series:  

– Relative homogeneity test procedure. 

– Step by step iteration procedure: the role of series (candidate, reference)  

      changes step by step in the course of the procedure. 

– Additive (e.g. temperature) or multiplicative (e.g. precipitation) model 

      can be used depending on the climate elements. 

– Including quality control and missing data completion. 

– Providing the homogeneity of the seasonal and annual series as well. 

– Metadata (probable dates of break points) can be used automatically. 

– The homogenization results and the metadata can be verified. 

 

Homogenization of daily series: 

– Based on the detected monthly inhomogeneities.  

– Including quality control and missing data completion for daily data. 

 

New developments of version MASHv3.03 

– COST ES0601 (HOME) format also can be used at I/O 

– developments for automation 

 

Some MASH specialty 



10 

 

– use of spatial covariance for comparison of series 

– automatic attribution of break points for the candidate series 

– automatic use of metadata 

 

Software MASHv3.03 can be downloaded from: 

http://owww.met.hu/pages/seminars/seeera/downloads.htm  
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Abstract 

 
The comparison of homogenization methods has proven in COST Action ES0601 to be a tough and tricky issue: 

Many methods involve much work, and they must be applied to different types of series and inhomogeneities for 

a better assessment of their capabilities. Yet the benchmark has consisted of long and mostly complete series, 

while there are many shorter series in real data-sets whose information is disregarded when only the longer ones 

are used. To test the influence of using all these series for homogenization purposes, an R routine has been 

developed that generates networks of data with different degrees of correlation and completeness, introduce 

ion methods (which must be able to 

run without any human intervention) to adjust them. Results show the poor performance of the absolute 

homogenization methods, with an overall good agreement between the other, and that the benefit of using short 

series is limited. 

 

 

1. INTRODUCTION 

 

It is quite frequent that the observing conditions of climatological stations suffer changes 

along their history, due to changes in instrumentation, relocations, changes in the environment 

of the station, etc. This changes normally affect the measurements, perturbing them and 

making difficult the study of the climate variability. Climatologist have been aware of this 

problem since long, and many methodologies have been proposed to detect and correct this 

inhomogeneities of the series. Reviews of the different approaches can be seen in 

PETERSON et al. (1998) and AGUILAR et al. (2003). Researchers had to implement their 

preferred methodologies by themselves in the past, but now there are a bunch of 

homogenization computer packages available in the Internet. 

 

In the frame of COST Action ES0601, an extensive inter-comparison of  homogenization 

methods was performed, comparing their ability to correct the variety of jumps, trends and 

outliers included in a complex realistic benchmark data-set of surrogate and synthetic series 

of monthly temperature and precipitation values. The details of this comparison exercise can 

be seen in Venema et al. (2012), where a wealth of conclusions are extracted and discussed 

about the different methodologies. Yet the complexity of the problem data-set prevented the 

comparison from being exhaustive: only participants using fully automatic algorithms could 

return complete results, while some time-consuming manual methods only could homogenize 

a reduced number of series. Moreover, some results produced by automatic methods were 

affected by errors not coming from the homogenization algorithms themselves, but rather 

from processes aimed at providing the results in the required output formats. 

 

Other problems aroused from the complex realism with which the benchmark data-set was 

implemented. Surrogate series were developed mimicking the statistical properties of real 

climatological series assumed homogeneous, but as some inhomogeneities were still present 

in these example series, their surrogates exhibited some inhomogeneities as well. Moreover, 

as the magnitude of the shifts introduced in the problem series were derived from a normal 

distribution, many small shifts were accompanying the bigger ones, and hence the different 
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detection thresholds set in the compared methodologies introduced variations in the results 

not directly related to the algorithm performances. 

 

On the other hand, and as an outcome of the meetings and discussions promoted by the COST 

Action HOME, the tested methodologies have improved after this first inter-comparison 

exercise. Yet implementing a new version of the benchmark data-set and repeating the 

homogenization exercise is not likely to take place in a near future due to the amount of work 

involved. Therefore, automatic benchmarking of the homogenization packages is an 

alternative worth to be explored, and this work is a first attempt in this line. The drawback is 

that only fully automatic methods can be tested in this way, but these can be foreseen as the 

more needed in operational climatology, where National Meteorological and Hydrological 

Services have to homogenize their data-bases repeatedly as they grow with the inclusion of 

new data. Manual methods may still be used in research works involving a limited number of 

selected long climatological series, but are impractical for the homogenization of whole dense 

networks. 

 

Both manual and automatic methods are normally addressed to long selected series, with no 

or relatively few number of missing data. However, operational observation networks are 

often populated with stations with short recording periods, whose information in usually 

neglected in homogenization studies. The potential advantage of using this complementary 

information will be tested also in this first automatic inter-comparison exercise through the 

Climatol package, thanks to its high tolerance to missing data. 

 

 

2. METHODOLOGY 

 

Temperature is a key climatological variable in the context of present concern about the 

variability of the Earth Climate, and this first benchmarking exercise will focus on it, 

generating three basic thermometric networks of 100 locations randomly distributed on a 4x3° 

lon-lat area. The seasonal cycle was taken from the monthly averages of maximum daily 

temperatures of 53 stations from the central area of the Duero river basin, Spain (Table 1). 

 
Table 1. Monthly averages of maximum daily temperatures (TA, °C) used for the generation of the basic 

networks 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

TA 7.9 10.5 14.2 16.3 20.6 25.8 29.9 29.3 25.2 18.7 12.2 8.3 

 

For the first location, a set of 12 monthly series of 60 terms each was randomly derived from 

normal distributions with the referred monthly means and a fixed standard deviation of 

1.5°C(similar to the observed values). The closest location to this first simulated station had 

their data computed adding to the reference series a random normal value with zero mean and 

the same 1.5 standard deviation, multiplied by a factor of 0.20. Data for the other 98 stations 

were generated similarly, in order of minimum distance to any station whose data were 

already computed. 

 

Two other basic networks were generated in this way, but using factors of 0.40 and 0.80, and 

the three networks were named TA20, TA40 and TA80. A final step consisted in adjusting the 

temperatures for altitude, varying the mean annual range of the stations in a random amount 

between -20 and 20%, and adding a constant trend of 2°C/Century to all series. In this way we 

obtained three basic networks with different degrees of inter-station correlations, as can be 

seen in Figure 1. 
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Figure 1. Correlogram of first differenced series of the three basic networks TA20 (very well correlated, in 

blue), TA40 (with intermediate correlations, in green) and TA80 (poorly correlated, in red) 

 

 

For each of the three basic networks, 100 homogenization runs were performed, according to 

the following procedure: 

 

1. 40 stations were randomly selected from the 100 available (Figure 2). 

2.  imposed on the first 5 stations (problem 

inhomogeneous series): two of them at fixed positions in series 1 to 3, and only one, 

but with random sign and location, in series 4 and 5. The last 10 years were always 

kept unaltered (Figure 3). 

3. Stations 6 to 10 remained unchanged (complete homogeneous references). 

4. Stations 11 to 40 were partially blanked, leaving only from 10 to 30 years of data (17 

to 50 %), with random location of the data period (incomplete homogeneous 

references). 

 

In each homogenization run, the problem series (the first five selected stations) were 

homogenized by some of the homogenization packages tested in Venema et al. (2012): 

 

1. ACMANT (Acm). 

2. Climatol: Applied to 10, 20 and 40 stations, with constant (cl1, cl2, cl4) and variable 

(Cl1, Cl2, Cl4) corrections. 

3. RHTestV3: Absolute (a, A) and relative (r, R) homogenization strategies, adjusting the 

mean (a, r) or the quantile frequencies (A, R). (RHa, RHA, RHr, RHR). 

4. HOMER: Pairwise detection + Joint detection + Correction (Hom). 
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Figure 2. Example series: 40 locations (numbered) are randomly selected from the 100 base network. 

Series 1 to 5 will be inhomogenized (problem stations, in red), 6 to 10 will serve as complete homogeneous 

references (in blue), and series 11 to 40 will also be homogeneous, but only retaining 17 to 50% of their 

data (in green). 

 
Figure 3. Inhomogeneities applied to series 1 to 5. Two fixed shifts for the first three series (in black, red 

and green), and only one, but randomly chosen, for series 4 and 5. 

 

The general procedure was to give the first 10 complete series (5 highly inhomogeneous and 5 

homogeneous) to every package and ask them to provide the solutions, adjusting the series to 

the last homogeneous period. One exception was RHTestV3, that cannot currently built a 

references series autonomously. In this case the nearest homogeneous series was provided for 

each of the five problem series. (This must be accounted for at the time of discussing the 

results, since the other methodologies have to build their reference series by themselves). The 

other exception was with Climatol, which in four applications could use the information of 10 

(in cl2 and Cl2) and 30 (in cl4 and Cl4) additional stations with many missing data. (The 

other packages could not use this fragmentary information because of their limited missing 

data tolerance). 

 

The whole process was implemented in an R script running on a Linux PC, and therefore 

ACMANT, being a Windows executable, had to be run through the Linux utility „wine". 

Other two homogenization packages running on Windows (MASH and AnClim) were tried 
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with the same strategy, but these attempts have been unsuccessful so far. Another 

homogenization package could not be tested (USHCN_v52d), but in this case the problem 

aroused from errors encountered when trying to compile its FORTRAN sources. Further 

efforts to incorporate these packages in this testing scheme will be done in the future. 

 

 

3. RESULTS AND DISCUSSION 

 

Four statistical parameters were computed for comparing the inhomogeneous problem series 

and the solutions provided for them with the original homogeneous series: 

 

1. RMSE (main general measure of homogenization performance) 

2. Difference of trends (relevant for climate change detection) 

3. Difference of means (important for climate mapping) 

4. Difference of standard deviations (useful for climate variability studies, although data 

at the daily scale are preferred for these) 

 

The results for RMSE and trend differences are presented in the box-plots  of Figure 4, where 

each box-plot summarizes 500 values (5 problem series and 100 runs). The scale of the graphs 

has been set constant for an easier interpretation, although some outliers lye outside the plot 

margins in the worst results. We can see that, in general, all the tested homogenization 

methodologies improve the problem inhomogeneous series (Inh), as we could expect given 

the high degree of inhomogeneity that was imposed to them: RMS errors are (mostly) lower 

than before the homogenization, and trend differences are unbiased even in the more 

dispersed results. 

 

It is also clear how the lower correlations of networks TA40 and T80 make the 

homogenization problem increasingly difficult. This happens also in the case of the absolute 

homogenizations RHa and RHA, in spite of not using reference stations, because TA40 and 

TA80 series display higher variability as well, reducing the signal to noise ratio and hence 

compromising the detection of the shifts. Therefore, absolute homogenization should be 

avoided whenever possible, and efforts to get reference series, even from proxy variables, are 

always advisable. 
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Figure 4. RMSE (left) and trend differences (right) of the problem series before (Inh) and after their 

homogenization by the tested methods. (Top to bottom plots: networks with good, intermediate and poor 

correlations) 
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All other results come from relative homogenization applications and, apart from RHR, give 

comparable results. The worse results of RHR come from the quantile matching correction, 

which also gave bad results in the previous benchmark comparison (Venema et al., 2012). 

The other RHTestV3 result, RHr, yields much better results, as could be expected from the 

fact that the problem series have constant shifts. Actually, it ranks in the first places or very 

near, although the differences with other methods are subtle, and the fact that the best 

reference series was provided to it by the testing script may be unfair to the rest of the 

methods, that had to build their references themselves. 

 

With respect to the use of additional information from fragmentary series, its advantage is 

only noticeable in the TA80 network, which has the lower inter-station correlations. 

Therefore, the ability of Climatol to manage series with a high rate of missing data will be 

more an advantage for these series (that will get their data gaps filled) than for the longer, 

more complete series. Applications Cl1, Cl2 and Cl4 differ from their counterparts cl1, cl2 

and cl4 in the correction method, since the latter apply a constant correction term to all values, 

while the former adjust also the standard deviation. As we know that the problem only need a 

constant correction to be solved, it is satisfactory to see that the variable corrections do not 

worsen the results very much, as happened with the RHR solution. 

 

The ranking of the results for trend differences is similar: once rejected the absolute 

homogenization approach and the RHR application, the remaining methods show very similar 

performance, with minor spread differences. The differences of means (not shown) exhibit the 

same results as the differences of trends, while the differences of standard deviations (not 

shown) have special characteristics: The constant correction methods (cl1, cl2, cl3 and RHr) 

yield the smaller (best) values, while the quantile adjustments applied by RHA and RHR give 

the worse results (biased and spread). Cl1 also produces dispersed values, that improve with 

the use of additional information in Cl2 andCl4 and approach their performance to the 

intermediate results achieved by Hom and Acm. 

 

 

4. CONCLUSIONS AND FUTURE WORK 

 

It is clear that absolute homogenization methods are to be avoided in favor of relative 

methodologies. Most of the other packages tested here showed similar performance, and the 

ability of Climatol to use series with many missing data has a limited effect on the 

improvement of its results. 

 

Automatic benchmarking has proven a useful method for repeated validation and comparison 

of the results of automatic homogenization packages, and therefore further exercises are 

envisaged to expand the scope of the results in: 

 

1. Including other packages in the comparison. 

2. Introduce random and seasonally dependent shifts in the problem series. 

3. Simulate variables with different seasonality and biased distribution (e.g.: 

precipitation). 

4. Study the effect of shortening the last homogenous period. 
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Abstract 

 
In the recent years new methodological tools have been developed for measuring the efficiencies of 

homogenisation methods. This paper describes these new tools and presents the efficiency of some widely 

applied homogenisation methods focusing on the homogenisation of monthly temperature datasets. Conclusions 

are based on the synthesis of different testing methods. The results show that the best homogenisation methods 

are the PRODIGE, MASH, ACMANT and the Craddock test.  

 

 

1. INTRODUCTION 

 

A large range of homogenisation methods (HM) is available for climatologists to improve the 

quality of observational time series. However, selecting the best performing HM is not trivial. 

The core of the problem is that the efficiency depends on the properties of the time series the 

method is applied to. These properties of real networks are diverse, thus it is hard to provide 

generally valid settings for validation datasets. In addition, the practical efficiency depends on 

the purpose of homogenisation. For instance, the accuracy of linear trend estimation is usually 

more important in climatology than the accuracy of change-point estimations. Until recently, 

efficiency examination of homogenisation methods typically meant the computation of the 

detection skill in test datasets, composed of an arbitrary number of change-points and white 

noise. Although such examinations may serve important information for the method 

developers, the detection skills obtained in this way is not a relevant metric for the users of 

homogenised climatic data. 

 

This study presents the latest results of the methodological development in measuring 

efficiencies of HMs, together with observed efficiencies for some widely used HMs. Three 

kinds of examinations are presented: i) Tests of detection parts only, in sets of relative time 

series (i.e. the difference between candidate series and reference series), ii) Blind tests of full 

homogenisation methods in the COST ES0601 (COST HOME) action with simulated datasets 

of networks, iii) The performance of ANOVA correction method with sets of detection results 

from various HMs. By comparing the results of these three kinds of examinations, the quality 

of the main components of HMs can be studied. 

 

 

2. METHODS 

 

In the first group of examinations (G1), the simulated test series are considered to be relative 

time series and the imaginary reference series are considered to be perfect. Consequently, 

there is no error due to imperfections in the reference time series used for detection and 

correction. Iterations or supplementary elements (e.g. metadata-use) are excluded. In this way 
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the only source of the errors is from the detection part of HMs. In the second group of 

examinations (G2) the blind test results with the COST HOME benchmark dataset (hereafter: 

Benchmark) are evaluated. In these experiments full networks are simulated and complete 

HMs are tested. In the third group of examinations (G3) the performance of ANOVA 

correction method is shown when it is coupled with the change-point detection results from 

various HMs. 

 

The properties of test datasets for G1 are very different from those of G2, while for G3 the 

input field does not include test series. The examined HMs also differ for G1 and G2, partly 

because only detection parts can be tested with G1, and partly because not all HMS tested in 

G1 also participated in the openly announced benchmarking exercise (G2).  

 

 

2.1. Input data 

 

In G1 the simulated series are relative time series, and the inhomogeneities in them fully 

belong to the candidate series. The length of time series is always 100 years, the time-

resolution is annual, and the background noise is white noise. The frequency, shape, and size-

distribution of inhomogeneities differ in the three versions used in this paper. The mean shift-

magnitude (m) is expressed as a ratio to the standard deviation of the white noise. 

- Dataset A:  One change-point is included in each time series. Its timing is year = 40 or 

year = 60. The shift-size is constant, m = 3. 

- Dataset B: Five change-points per 100 years are included on average, but the actual 

number of change-points varies in the series of the dataset. The break sizes are normally 

distributed with a mean of zero, m = 3.5.  

- Dataset C: This dataset contains a rather complex structure with randomly distributed 

inhomogeneities (IHs) of different types (change-points, platform-shaped changes and 

trends) and magnitudes, possessing similar statistical properties to those of detected IHs in 

relative time series derived from observed temperature time series in Hungary 

(Domonkos, 2011a). In this dataset the number of IHs is high, and short-term platforms 

are particularly frequent. This dataset was derived in a way that the statistical properties of 

detected inhomogeneities from simulated datasets made to be similar to those from true 

observed temperature datasets in Hungary through an iterative development of test 

datasets. Due to the way of its derivation the inhomogeneity-properties of this dataset are 

likely the closest to the real-world properties. The mean frequency of change-points is 

31.1 per 100 years and  m = 1.2. 

- In G2 the Benchmark is used. In this dataset monthly temperatures of complete 

observational networks are simulated. The statistical properties of the temperature data in 

the Benchmark (moments, spatial correlations, seasonality, low frequency fluctuations) 

mimic the properties of true European observational temperature networks (Venema et al., 

2011). The frequency, size-distribution and seasonality of inhomogeneities were set by an 

expert-team of the COST Action HOME, and finally the properties are close to those of 

dataset B in most respects (the mean frequency is 5 per 100 years and m = 0.8°C). 

- In G3 the input data are not test series, but the list of timings of detected change-points 

and outliers in the public homogenisation of the Benchmark. These data are available for 

the public (Venema, 2011). 
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2.2. Homogenisation methods 

 

In G1 nine HMs are examined. All of them are widely used, objective methods that can be 

applied automatically. In this paper the abbreviations of the HMs for G1 have always three 

letters, thus they may deviate somewhat from their widely used acronyms. The Bayes method 

(Bay, Ducré-Robitaille et al., 2003), Caussinus - Mestre method (C-M, also known as 

PRODIGE, Caussinus and Mestre, 2004), Easterling – Peterson method (E-P, also known as 

FTP, Easterling and Peterson, 1995), Multiple Analysis of Series for Homogenisation (MAS, 

Szentimrey, 1999), Multiple Linear Regression (MLR, Vincent, 1998), Standard Normal 

Homogeneity Test for shifts only (SNH, Alexandersson, 1986), Standard Normal 

Homogeneity Test for shifts and trends (SNT, Alexandersson and Moberg, 1997), t-test (tts, 

Ducré-Robitaille et al., 2003) and Wilcoxon Rank Sum test (WRS, Wilcoxon, 1945) are 

examined in G1. 

 

Searching-algorithms for detecting multiple IHs, as well as parameterization for selecting 

significant IHs are usually the same as in the referred sources, but there are some deviations. 

The significance thresholds recommended by the constructors to ensure the 0.05 rate first type 

error in pure white noise processes are applied generally, but with some exceptions: The 

Caussinus – Lyazrhi criterion (Caussinus and Lyazrhi, 1997) is applied for Bay, while for 

MLR and tts the thresholds are based on the authors’ Monte-Carlo simulations. In SNT the 

detected IHs are always trends when the estimated duration of change is at least 5 years, and 

always change-points in the reverse case. The version of MLR used in this study slightly 

differs from the original one, but it has no considerable effect on the detection results (not 

shown). Partly deviating from the original content of HMs, the cutting algorithm (Easterling 

and Peterson, 1995) is included in Bay, MLR, SNH, SNT and WRS. 

 

A uniform pre-filtering of outliers is applied before the use of any HM, and the correction is 

also uniform, ensuring that any difference between the results is due to the different skills in 

the detection process. 

 

In G2 and G3 the true contributions of the public homogenization of the Benchmark are 

examined. In this study only complete contributions with 15 homogenised networks from the 

surrogated temperature dataset are considered, except for the Craddock-test, which 

homogenised seven networks. The AnClim contribution was complete, but unfortunately had 

to be removed from the G3 examination because of discrepancies between applied and 

reported breaks. MASH detection has not been examined with ANOVA either, because it 

homogenizes every month separately (Venema et al. 2011). 

 

From different versions of the same HM often the one with the best performance is selected 

only. The following HMs are analysed here: PRODIGE monthly (PROD), ACMANT late 

(ACMA, Domonkos, 2011b), MASH main (MASH), Craddock test by Vertacnik (Crad, 

Craddock, 1979), USHCN 52x (USHC, Menne and Williams, 2009), C3SNHT (SNHT), 

Climatol 2.1a (Clim, Guijarro, 2011), PMTred rel (PMT, Wang et al., 2007). 

 

 

2.3. Efficiency measures 

 

In this study efficiency (E) of homogenisation is usually expressed as the percentage of 

ceased root mean squared error (RMSE) relative to the RMSE in raw data (eq 1). 
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In some examinations centred RMSE (CRMSE) is applied. It is the RMSE of the anomalies 

from the mean. Let true values (homogenisation estimations) be denoted by t (x) in n-year 

long time series, then the CRMSE is formulated by (2). 
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The advantage of CRMSE is that RMSE depends on the chosen fix point of the 

homogenisation, i.e. on a value or section of the time series that is considered to be free of 

errors, hence all the other values are adjusted to that. The drawback of CRMSE is that 

distortions of true spatial coherence in networks are not considered by that. 

 

The CRMSE is chosen for evaluating E of annual value estimations in the Benchmark 

homogenisation (denotation: ECA), because there was no fix point accepted by all contributors. 

The RMSE is applied for calculating the E for i) annual values in G1 (EA), ii) trend-slopes for 

individual annual time series (ET), iii) network-mean trend-slopes for the whole Benchmark-

period (1900-1999, ETNL), iv) network-mean trend-slopes for the second half of the 

Benchmark-period (1950-1999, ETNS).  

 

In the early part of Benchmark the ratio of missing data is high, therefore it has to be taken 

into account that the expected value of subset-means deviates from the expected value of the 

mean of all time series in network. Let the number of available stations be denoted by K for 

year j, then the subset-mean (denoted by X with upper stroke) is calculated by (3).  
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When K equals the total number of stations the following notation is used: 

kjj XX ,  (4) 

Then the unbiased estimation of network-mean (Y) for year j is shown by (5). 
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In eq. 5 m denotes the number of years with available data in each station. 

 

Detection skill is also applied. Let the number of right detections, that of false detections and 

that of all change-points be denoted by SR, SF  and S, respectively. Then the detection skill 

(ED) is calculated by (6). 
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
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The parameterisation of SR, SF  and S is the same as in Domonkos (2011a). 

 

 

2.4. ANOVA 

 

The ANOVA is based on the minimisation of variance of homogenised data under the 

following criterions: i) The climate signal is the same for each time series, ii) the station-

effect is always constant between two adjacent change-points of a time series. The minimum 

variance can be calculated by an equation system in which the time-dependent climate effects 

and the site-effects are the variables (Caussinus and Mestre, 2004). 

 

The ANOVA provides the optimal solution of homogenisation-task when the input data meets 

with the written criterions. In practice, there is hardly any problem with the uniformity of 

climate signal, since networks are expected to be formed for a region of the same climate. The 

second criterion is more problematic, because the detected timings of change-points by HMs 

are usually neither complete nor accurate.   

 

 

3. RESULTS 

 

3.1. Tests of detection parts (G1) 

 

Fig. 1 shows the EA and ET for Dataset A. Throughout this paper, the colour blue means C-M 

or C-M based HM, red means MAS and green means SNH or SNH based HM. It can be seen 

that in case of 1 change-point per time series the change-points are detected well with high 

certainty and with an ideally good reference series the homogenisation could be almost 

perfect, i.e. most efficiencies are above 90% and for EA the values are often above 95%. EA is 

always higher than ET. E-P (tts) has slightly (markedly) poorer performance than the other 

HMs. The differences among the performances of other HMs are very small. 

 

Figure 1. Efficiencies of nine detection methods in RMSE of annual values (EA) and individual trends (ET) 

for Dataset A 
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Fig. 2 presents the same kind results for Dataset B. In case of five change-points per time 

series on average, the homogenisation results are slightly poorer than in case of 1 change-

point only, but the performances are generally still very good, the efficiencies are mostly 

above 90%. EA is always higher than ET again. Similarly as with Dataset A, E-P and tts show 

clearly poorer performance than the other HMs. Considering the mean of EA and ET, the rank 

order of the best HMs is C-M, Bay, MAS and SNH, but with insignificant differences in the 

performances (95.4%, 95.1%, 94.8% and 94.7%, respectively). 

 

Fig. 3 presents the results for Dataset C. These results show that the presence of large number 

of small-size and platform-like inhomogeneities raises the uncertainty of inhomogeneity 

detection. The E-P and tts have very poor performances, while the other HMs produce rather 

similar results, around 70-75% efficiency. In this experiment ET is sometimes  

 

Figure 2. The same as Fig. 1, but for Dataset B 

 

Figure 3. The same as Fig. 1, but for Dataset C 

 

higher than EA. Focusing on the rank order of the performances of the best methods, two 

important differences appear relative to the results of Dataset B: i) The lead of C-M is slightly 

larger, ii) The MLR has the second best performance here. The rank order: C-M (75.9%), 
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MLR (73.8%), Bay (73.3%), MAS (73.0%), SNH (71.9%). For Dataset C the detection skills 

are also calculated (Fig. 4). Here the C-M is the best again, but otherwise the picture is quite 

different compared to Fig. 3. The main differences are: i) Only the MAS has comparably 

good performance with C-M, ii) The performance of E-P and tts is not markedly poorer than 

that of the other HMs, moreover, counting with ED the E-P would be the third best HM, iii) 

The most popular HMs (SNH, SNT) have markedly poorer performances than the best 

methods. 

 

With the joint evaluation of EA, ET and ED we can prove that the traditional detection skill 

examinations could not give a reliable picture about the true performance of HMs. The E-P 

seems to be one of the best methods when only the ED is considered, but the reconstruction of 

true annual means and trends is more important in climatology than the ratio 

 

Figure 4. Detection skills (ED)  of nine homogenisation methods for Dataset C 

 

of accurately detected change-points. On the other hand, when HMs of similar performances 

in EA and ET are examined, the differences in ED is a valuable piece of information because in 

contrast with the simplified examinations in G1, the full homogenisation procedures often 

contain step-by-step elements, and for this reason the detection-errors in a certain step may 

affect the accuracy of estimations in later steps. All in all, the results of G1 show that C-M is 

the best detection method, followed by MAS. The other detection tools are less powerful, 

although in many cases the deficiencies from the best HMs are small.  

  

 

3.2. Blind test results of the COST Action HOME (G2) 

 

Fig. 5 presents the ECA and ET results for eight contributions which homogenised the 

Benchmark. In constructing this figure, HMs that are based on C-M, MAS or SNH detection 

are selected, as well as Crad that is included due to its outstanding performance.  
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Figure 5. Efficiencies of various homogenisation methods in the Benchmark experiments in the CRMSE of 

annual values (ECA) and RMSE of individual trends (ET) 
 

The main findings are as follows: i) The performances are much poorer than in the G1 

experiment with Dataset B, which indicates that most homogenisation errors are not due to 

detection errors. ii) The efficiencies are positive what proves that the homogenised time series 

have better quality than before homogenisation. iii) The best four methods (including PROD 

and MASH) have a markedly better performance than SNH-based HMs. iv) ACMA and Crad 

have even better performance than PROD and MASH.  

 

Figure 6. The same as Fig. 5, but for the RMSE of network-mean trends between 1900-1999 (ENL) and 

between 1950-1999 (ENS) 

 

Fig. 6 presents the performances in network-mean trend estimations. The mean bias of 

network mean trends in raw data is 0.39°C/100yr (0.69°C/100yr) for 1900-1999 (1950-1999). 

The results show that it is a difficult task to reduce these trend errors by homogenisation. 

Particularly ENL is generally low or often even negative. Its likely explanation is that in the 

early section of the time series the ratio of missing data is very high. The rank order of the 

best HMs is somewhat different here than in Fig. 5. The best is the ACMA, which is followed 
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by the MASH, Crad and PROD. Note that due to the small sample-size the stochastic noise is 

very high in these characteristics. 

 

 

3.3. Unified evaluation of G1 and G2 

 

First it has to be clarified that the possibility of reliable comparisons between the results of G1 

and G2 is limited, because the full detection process of HMs is often different from the basic 

method. For instance, the detection part of ACMA is a modified version of C-M-detection. In 

addition, ACMA is applicable only for monthly data, and it is recommendable only when 

station-effects have monthly cycle (series of monthly temperatures). Similarly, the detection 

parts of USHC, Clim and PMT are not exactly identical with SNH, there are differences in the 

selection of significant change-points and sometimes also in other details. Crad, being 

subjective, has no counterpart in the G1 examinations. Note that objective versions of 

accumulated anomaly based detection methods, similar to that of Crad, exist (Buishand, 1982) 

and they have been tested in G1-like examinations (Domonkos, 2008). According to those 

examinations the accumulated anomaly based detection methods have similar performance to 

that of WRS, which means that its deficiency from the best methods is moderate. Note also 

that the detection part of PMT was also tested (Domonkos, 2011a) and its performance was 

almost exactly the same as that of the SNH. 

 

One interesting finding is that for G2, the performance of PROD and MASH relative to the 

SNH-based HMs is much stronger than in G1 results. Its explanation is the consequent 

mathematical structures in the whole homogenisation processes of PROD and MASH. While 

in G1 results the differences between performances are often very small, in G2 examinations 

only two HMs have comparable or better results than PROD and MASH. These two methods 

are the ACMA and Crad. ACMA is an improved version of PROD, and the results show that 

the improvement has been successful. The good performance of Crad has a very different 

explanation. The Crad incorporates the unique features of human intelligence that are, 

according to our results, difficult to convert perfectly into automatic or semi-automatic HMs. 

 

 

3.4. ANOVA with various detection results 

 

This section examines the performance of ANOVA correction method, when it is applied to 

the detection results of various HMs that originally did not apply ANOVA for correction. The 

results are presented in Fig. 7 and 8. Fig. 7a (7b) shows the impact of ANOVA on ECA (ET).  
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Figure 7. Efficiencies of various homogenisation methods in the Benchmark experiments with and without 

ANOVA application. a) (upper) CRMSE of annual values (ECA) b) (bottom) RMSE of individual trends 

(ET) 

 

 

It can be seen that the application of ANOVA generally raises the efficiencies. The 

improvement is bigger in ET than in ECA. Interestingly, the ANOVA is even beneficially for 

the already very accurate contribution Crad, and this combination shows the highest 

efficiencies (except for ENS, see later) for all the HMs examined in this study. 
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Figure 8. The same as fig. 7, but for RMSE of network-mean trends a) (upper) 1900-1999 (ENL), b) 

(bottom) 1950-1999 (ENS) 

 

 

The general picture for network-mean trends is very different than for annual CRMSE and 

individual trends (Fig. 8), i.e. the effect of ANOVA is sometimes negative, particularly for 

ENL. Note that the ENL values are often negative both without ANOVA and together with that. 

These results tend to show that when original HMs yield negative efficiencies, the ANOVA 

might not be able to do improvement, perhaps due to the detection errors on which the 

network-mean trends are more sensitive than the annual CRMSE and individual trends.   

 

 

4. DISCUSSION AND CONCLUSIONS 

 

One important finding of this study is that apart from some poor detection methods the main 

source of the inaccuracy in homogenised time series is often not the detection part of HMs. In 

a complex homogenisation procedure, the time series comparison, the treatment of missing 

data and outliers, and the calculation of adjustment factors all together influence the final 

performance. For long the central question in homogenisation was the search for more 
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accurate detection methods, while relatively little attention was paid to the influence of other 

parts of HMs. These results suggest that simple detection examinations, such as G1 are not 

suitable to reveal the true properties of complete homogenisation methods.   

 

Another notable finding is that efficiencies are more often negative than it was thought earlier 

(Peterson et al. 1998, Auer et al. 2005, etc.). That overestimation was based on the fact that in 

the homogenisation results of real datasets the common bias of trends in networks does not 

appear at all, it can be seen only when the evaluation is made on simulated data with exactly 

known properties of artificially set inhomogeneities (Venema et al., 2011). On the other hand 

we note that in the true world the use of metadata may substantially help in achieving 

effective homogenisation results, while metadata was not simulated for the Benchmark 

homogenisation. 

 

The reconstruction of network-mean trends, that is a crucially important task in climatology, 

seems to be more sensitive to the weak points of HMs. In the examination of the Benchmark 

homogenisation the network-mean trends for 1900-1999 often have larger errors after 

homogenisation than in the raw data. Note that the lengths of time series in the Benchmark 

are different, and only 3 time series start from 1900 in each network, while the other time 

series start later, and the low number of comparable time series significantly increases the 

uncertainty of the homogenisation results. One might think that to reconstruct the network-

mean trends with these conditions is an unfairly hard task, but in fact, climatologists often 

have to face with similar problems, so the experience of negative efficiencies should be taken 

seriously. Other characteristics than the ENL rarely show negative efficiencies in this study, 

and for the best HMs (ACMA, Crad, PROD, MASH) all the efficiencies are positive. 

However, one has to take into account at this point that real datasets could be less favourably 

for achieving good performances than the Benchmark.  

 

The difference between Dataset B and Dataset C indicates that the Benchmark is likely easier 

for HMs than the true datasets (see more discussions about this in Domonkos, 2011a). Even if 

the Benchmark represents well a true class of real datasets, there are surely many others for 

which the homogenisation task is an even bigger challenge. For keeping low the chance of 

negative efficiency and its effect on climate variability analyses we have two main 

recommendations. First, moderately effective but popular HMs should be replaced with HMs 

of the best performance in climatological studies. Second, more benchmarking studies are 

needed, and ones with particular attention to the search of threshold conditions until which the 

statistical homogenisation is beneficial would be essentially useful. 

 

Not correcting some detected breaks may well sometimes lead to more accurate data. To 

explain more the last idea, we mention that an indication of inhomogeneity e.g. by a 

homogeneity test does not mean necessarily that homogenisation-adjustments will provide 

more reliable and more accurate data in comparison with the raw data. Note that this idea is 

not new, and in the USHCN it has already been applied (Menne and Williams, 2009). 

 

The examinations of ANOVA with the detection results of various HMs show that the 

ANOVA often produces higher efficiencies than the original results of the examined HMs. To 

understand the success of ANOVA it has to be noted that in ANOVA all inhomogeneity-

caused biases and their mutual influences are treated together in one equation system. By 

contrast, when the correction-factors are computed for every break individually, errors, for 

instance due to undetected IH, may accumulate. 
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A tentative conclusion of G3 experiments could be that the ANOVA should be included in 

HMs that have not included ANOVA until now. However, some examples show that the 

performance of ANOVA is poor when the quality of detection results is insufficient. 

Therefore our final conclusion is that HMs with effective detection method and correction 

method together should be applied in the homogenisation of climatic time series. The SNHT 

and its modern versions (PMT, Climatol, USHCN) may function quite well in certain cases, 

but both their detection parts and correction parts are poorer than that of the best HMs. The 

same also refers to other HMs that are based on the single change-point detection and 

corrections to one or more reference series or reference sections. According to our present 

knowledge the best HMs are the ACMANT, Craddock, Craddock + ANOVA, PRODIGE and 

MASH. Note that the performance of Craddock is strongly user-dependent, and this HM 

cannot be tested in large datasets. Our conclusions refer primarily to the homogenisation of 

temperature datasets. 
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Abstract 

 
In the COST ES0601 project (COST HOME) a benchmark temperature and precipitation dataset (Benchmark) 

was developed for assessing the efficiencies of homogenisation methods via blind test experiments. In 

homogenising temperature data, the best performance was achieved with ACMANT. However, ACMANT was 

developed with the use of the Benchmark, thus its observed performance is not fully comparable with the blind 

tests results of other methods. Consequently, our knowledge about the true performance of ACMANT is limited. 

This study includes a brief analysis of the theoretical properties of ACMANT, as well as presents new 

experimental results. The aim of the study is to provide more information for the objective evaluation of 

ACMANT. 

 

 

1. INTRODUCTION 

 

ACMANT (Adapted Caussinus-Mestre Algorithm for homogenising Networks of 

Temperature series) is a recently developed homogenisation method. It is applicable for 

monthly temperature series. In the blind test experiments of COST HOME an early version of 

ACMANT was tested. The early version produced outstanding results regarding the RMSE of 

monthly values, but it was rather poor in reconstructing true climatic trends (Venema et al. 

2012). Later the ACMANTv1.2 (http://www.c3.urv.cat/members/pdomonkos.html) was 

developed, it is referred as ACMANT late in Venema et al. (2012) and referred as ACMANT 

in this study. 

 

The efficiency results that are obtained with homogenising Benchmark could be affected by 

the fact that Benchmark was used in the development of the new method. The treatment of 

seasonal changes in inhomogeneity caused biases (hereafter: station effects) is particularly 

criticised from the point of view that the properties of true observed data might considerably 

differ from the model that applied both in Benchmark and by ACMANT. Unfortunately, at 

present there is no opportunity to perform new blind tests for ACMANT that are comparative 

with other homogenisation methods. In this paper the arguments and evidences are intended 

to be collected in order to obtain the evaluation of ACMANT as objective as possible. The 

organisation of the paper deviates somewhat from the traditional form. In the next section the 

theoretical properties of ACMANT will be discussed, then a distinct section will be devoted 

to analyse the seasonal changes of station effects in temperature series. Studies about real data 

homogenisation, as well as a test experiment with data of uni-seasonal station effects are 

discussed there. In section 4 more test results with ACMANT will be presented and analysed, 

while the last (fifth) section is for synthesising the results and drawing the conclusions. 
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2. DESCRIPTION OF ACMANT 

 

2.1. General characterisation 

 

In this section a brief description of ACMANT is provided, the full description can be found 

in Domonkos (2011a). ACMANT is a fully automatic homogenisation method what means 

that after inputting the raw data and some characteristics of the network (number of stations, 

length of time series, etc.) the execution does not need human assistance as far as the final 

homogenised data are produced by the software. 

 

The most important characteristics of ACMANT are a) The harmonisation of examinations in 

different time-scales (i.e. in annual and monthly scales), b) The use of the optimal 

segmentation and Caussinus-Lyazrhi criterion in the detection of inhomogeneities, c) The use 

of ANOVA for the final corrections of inhomogeneities. 

 

ACMANT has four main parts. 

 

I) Preparation. This part contains initial calculations (anomalies, spatial correlations, etc.), 

outlier filtering, as well as filling the data gaps caused by missing data and outliers. 

 

II) Pre-homogenisation. The purpose of pre-homogenisation is to filter the largest errors from 

the reference-composites of the final homogenisation. In the pre-homogenisation 

temporary adjustments are applied to reduce the station effects. Then outlier-filtering and 

interpolations are performed again using the improved data.   

 

III) Homogenisation. First the long-term biases are searched in annual scale (Main Detection), 

then with further calculations the timings of the change-points are determined in monthly 

scale. The remaining station effects are checked on monthly scale with Secondary 

Detection. Once the detection is finished, ANOVA is applied for calculating the correction 

terms. ANOVA also provides the final calculations for filling the gaps caused by missing 

data and outliers. 

 

IV) Final adjustments. In this step change-points with insignificant shift-sizes are excluded 

from the list of change-points, and ANOVA is applied again with the reduced set of 

change-points. 

 

 

2.2. Selected segments of ACMANT 

 

a) Building reference series from composites 

ACMANT performs relative homogenisation. It means that before homogenisation relative 

time series are derived from the original series. A relative time series (T) is the arithmetic 

difference between the candidate series (A) and a reference series (F). The traditional way of 

creating reference series (Peterson and Easterling, 1994) is applied with a specific 

parameterisation in ACMANT. For a candidate series (g) all the other series in network (s = 

1…S) are used as reference composites when the spatial correlation (r) with g exceeds a 

preset threshold. More precisely, r stands for the spatial correlation between the first 

difference (increment) series. The reference-composites are weighted according to the squared 

correlations (r
2
). 
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In eq. 1 [j1,j2] represents a section between years j1 and j2, i.e. eq. 1 can be applied to any 

period of the time series. In ACMANT the threshold r is 0.4, but for at least two composites r 

≥ 0.5 is expected. Note that these thresholds are low relative to some recommendations 

(Alexandersson and Moberg, 1997, Auer et al. 2005, etc.). 

 

b) Creation of multiple relative time series 

ACMANT uses multiple relative time series, because the number of available reference 

composites often varies according to the sections of the time series. The minimum length of T 

series is 30 years. Three T series are always constructed: (i) with the highest possible  Σr
2
, (ii) 

with the earliest starting year, (iii) with the latest ending year. However, as criterions (i), (ii) 

and (iii) might be satisfied by the same series, the true number of T series can be lower than 

3. On the other hand, more than three T series can be involved according to the changes in Σr
2
 

for different sections of the candidate series (Domonkos, 2011a). 

 

c) Main Detection 

Detection of inhomogeneities is always performed one-by-one for different candidate series in 

ACMANT. Optimal step-function is fitted to two annual variables, namely to the annual mean 

(TM) and amplitude of seasonal cycle (TD), and the common change-points of them are 

searched. The minimum distance between two change-points is 3 years. In other respects 

Main Detection is the same as the detection of PRODIGE (Caussinus and Mestre, 2004). 

 

Eqs. 2 and 3 show the calculation of tm and td for year j. 
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Then the optimal segmentation of an L year long period into K + 1 segments is given by eq. 4. 
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Upper stroke denotes the time average for segment k, c0 is constant, its value in 

ACMANTv1.2 is 1.414. 

 

The number of segments is optimised by the Caussinus-Lyazrhi criterion (eq. 5, Caussinus 

and Lyazrhi, 1997). 
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d) Precision of the timings of detected IHs 

Main Detection works on relatively long time-scale. After Main Detection more precise 

timings of change-points are searched applying 48-month symmetric windows around the pre-

estimated timings of the change-points. Note that within such a window only 1 change-point 

was detected, since the minimum length of segments is 3 years in Main Detection. In a 

window, two-phase harmonic functions are fitted to the values, and the optimum fitting is 

searched. Phase-change in one of the 25 central months is accepted only. The timing of the 

phase-change in the optimum fitting is the final timing of the detected change-point. 

 

e) Secondary Detection 

When after the adjustments that applied according to Main Detection results, accumulated 

anomalies still exceed some predefined thresholds, Secondary Detection is applied. 

 

In Secondary Detection 60-month long sub-series of monthly values around the maximum of 

accumulated anomalies are examined. At this step the optimal segmentation is applied for the 

time averages of monthly values, but the section-means are substituted with harmonic 

functions of annual cycle for sections of minimum 10 months, and the number of segments is 

maximised by 3 for a sub-series. 

 

f) Correction: ANOVA 

In ACMANT, ANOVA is applied for calculating the final correction-terms. This procedure 

minimises the standard deviation of the homogenised data. It can be proved that ANOVA 

provides the optimal estimation of correction terms when the following two conditions exist: 

i) the climate signal is the same in the network, ii) the station effect is constant between two 

adjacent known change-points (Caussinus and Mestre, 2004). 

 

g) Pre-homogenisation 

In ACMANT each time series are pre-homogenised in a way that in the calculation of the 

adjustment-terms for series s, series g is excluded from the process, when s is prepared to be a 

reference-composite in the final segmentation of series g. As s usually takes part in the 

homogenisation of all the other time series of the network, usually N-1 different pre-

homogenisations are performed for an individual s in a network of N stations. 

 

First the order of the candidate series is set, it is from the series of estimated poorest quality to 

the series of estimated best homogeneity. The determination of the order is based on the 

estimation of maximal station effects. This step necessarily contains some arbitrary criterions 

(Domonkos, 2011a). 

 

During the pre-homogenisation ANOVA is not applied, because the repetition of ANOVA 

would overuse the spatial connections among data. In the pre-homogenisation temporary 

adjustment terms are applied. These terms are calculated with the help of unified relative time 

series. 
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h) Temporary adjustments: Unified relative time series 

A unified relative time series has the following properties: i) It covers the whole period for 

which the homogenisation of the candidate series can be performed, ii) It includes the relative 

time series unchanged for which Σr
2
 is the highest (it is often shorter than the whole period), 

it is the principal section, iii) The principal section is completed with other relative time series 

to cover the whole period defined by i), the latter series are complementary series, iv) The 

complementary series are adjusted before completion in a way that systematic biases due to 

differences of the spatial means of station effects for differing subsets of stations are intended 

to be elaborated. With other words, as the regional average of all stations (N) does not equal 

to the average of some subsets of Q stations (Q < N), this source of bias has to be treated in 

the creation of unified relative time series. In the early version of ACMANT that was tested in 

the blind test experiments with the Benchmark (Venema et al. 2012), the main source of 

trend-errors with ACMANT was the lack of harmonisation among relative time series. 

 

 

2.3. Evaluation of the theoretical properties of ACMANT 

 

I)  Factors explaining the high efficiency 

- Optimal segmentation with the Caussinus-Lyazrhi criterion. Earlier efficiency tests of 

detection methods proved that this method performs best among the inhomogeneity-

detection methods used in climatology (Domonkos, 2008, 2011b). The joint segmentation 

(Picard et al., 2011) could have similar or even better performance, but it has not been 

proved yet with tests.  

- Harmonisation of the examinations of different time-scales in the detection process. The 

signal to noise ratio is higher in low time resolution than in high resolution, but to find the 

precise timings and the occurrences of short-term biases the examinations in high 

(monthly) resolution is also necessary. This kind of harmonisation is unique in ACMANT. 

A particularly valuable novelty is the bivariate detection that yields results in monthly 

scale in spite of the examinations are made in annual scale. Note that the latter is also 

criticised sometimes, because the true annual cycles of station effects are unknown. 

- The application of ANOVA makes the correction terms to be as accurate as possible. See 

also Domonkos et al. (2012). 

- Pre-homogenisation is applied in a way that multiple use of the same spatial connection is 

not allowed, thus the accumulation of errors due to the repeated inclusion of a noise-term 

or a non-revealed inhomogeneity is excluded. 

- Outlier filtering and gap filling are repeated using data of higher and higher quality during 

the homogenisation procedure. 

 

II) Weak points and doubts around ACMANT 

- ACMANT was tested with Benchmark, and in Benchmark the station effects have 

harmonic annual cycles with maximum biases in winter and summer, thus this feature of 

Benchmark favours to ACMANT. It could be questioned how the Benchmark-model is 

applicable for real data with respect to the annual cycle of station effects. See its analysis 

in Sect. 3. 

- ACMANT uses some arbitrary parameters. These parameters were set with the help of 

Benchmark-experiments, thus the performance of ACMANT on datasets of markedly 

different properties from Benchmark is unclear. See more discussion about it in Sect. 4.2. 

- The use of unified relative time series for calculating adjustment-factors may be 

suboptimal, since the use of homogeneous sections in pairwise comparisons could likely 

produce more accurate results. However, it is a challenge to find a good automatic 
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subprogram of pairwise comparisons (although such subprogram has already been created 

by Menne and Williams, 2009). Note that the unified relative time series are applied only 

for temporary adjustments, thus the undesired effect to the final efficiency is supposed to 

be little if any. 

- The use of multiple comparison might be better in the detection part than the use of one 

reference series from composites. It is a question that cannot be decided in a theoretical 

way, and the results of the Benchmark experiment are also inadequate to clarify this point, 

since the effect of the chosen method in time series comparison cannot be examined 

separately from the other characteristics of homogenisation methods. 

 

 

3. THE SEASONAL CYCLE OF STATION EFFECTS AND ITS IMPACT ON THE 

PERFORMANCE OF ACMANT 

 

ACMANT presumes harmonic annual cycle of station effects with extremes of biases in mid-

summer and mid-winter, therefore the adequacy of Benchmark to this respect has to be 

evaluated. 

 

In Benchmark the station effects have annual cycles of definitely harmonic shape and modes 

in winter and summer. The size of the maximum deviation has a standard normal distribution 

with 0 expected value and 0.4 °C standard deviation. Although the modes are always in 

winter and summer, the phases still have substantial variation: the modes can be in any month 

of summer and winter, and they more often occur in the beginning or ending months of 

seasons than in the middle month (Venema et al. 2012). 

 

In studies of the homogenisation of true observational temperature series more 

inhomogeneities were reported for summer series than for winter series (Moberg and 

Alexandersson, 1997; Drogue et al. 2005; Domonkos, 2006, Domonkos and Štěpánek 2009). 

Moberg and Alexandersson (1997) pointed on the main cause of this seasonal difference: 

changes in radiation-effects due to technical changes of the temperature observations are 

larger in summer than in winter. Czech and Hungarian temperature series were homogenized 

with 16 homogenization methods (Domonkos and Štěpánek 2009), and the results show that 

both the frequency and the magnitude of station effects are the smallest in winter and the 

largest in summer. On the other hand, Moberg and Alexandersson (1997) found the largest 

temperature-shifts in winter (but the highest shift-frequency in summer), Štěpánek reported 

the largest station effect for September (personal information, 2010), and according to some 

assessments, the mean magnitude of seasonal cycles is larger in Benchmark than in true 

observational series (Venema et al. 2012). Note that synoptic climatological factors might 

cause annual cycle of station effects in other way than with summer and winter modes. 

 

Considering that the detection results provide only estimations of the true properties, and the 

seasonal cycles of Benchmark have some non-natural irregularity, it is hard to estimate if 

Benchmark or the true observational data favours more ACMANT regarding to the seasonal 

cycle of station effects included in them. Anyhow, it is useful to know the performance of 

ACMANT when there is no seasonal cycle of station effects at all. For this reason a special 

experiment was made with Benchmark: The monthly anomalies (from the monthly mean of a 

given series) of a given year were randomly re-ordered. The way of reordering was the same 

for each station-series and for both the homogeneous and inhomogeneous (“raw”) data. The 

re-ordering was changed randomly year-by-year. In this way a dataset was created in which 
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all the annual values are the same as in Benchmark, but the seasonal cycle of station effects is 

ceased. The performance of ACMANT (“ACMANTx” in Table 1) was tested in this dataset. 

 
Table 1. Efficiencies in reducing the RMSE / CRMSE errors of the row data applying various 

homogenisation methods (1 = perfect homogenisation). CRMSE = centered RMSE (Venema et al, 2012), m 

= monthly, a = annual, t = trend slope, nt1 = network mean trend slope for 1900-1999, nt2 = network mean 

trend slope 1950-1999, the description of the homogenisation methods is in Venema et al. (2011) 

Method CRMSE(m) CRMSE(a) RMSE(t) RMSE(nt1) RMSE(nt2) 

ACMANTv1.2 0.563 0.728 0.768 0.382 0.544 

ACMANTx 0.412 0.662 0.739 0.272 0.634 

PRODIGE main 0.416 0.676 0.724 0.042 0.436 

PRODIGE trendy 0.413 0.679 0.728 0.031 0.435 

PRODIGE monthly 0.431 0.693 0.735 0.093 0.426 

MASH main 0.398 0.667 0.706 0.315 0.441 

Craddock Vertacnik 0.461 0.724 0.770 0.278 0.403 

USHCN 52x 0.382 0.586 0.490 -0.124 0.102 

 

In accordance with the expectations, the efficiencies are lower than with the true Benchmark, 

but the decline turned out to be not too large. The observed efficiencies are in the range of the 

efficiencies of PRODIGE and MASH with the true Benchmark, and the estimation of 

network-mean trend bias is even better. The efficiency for reconstructing the network-mean 

trends of 1950-1999 has increased relative to the original experiment with ACMANT, but it is 

likely a random effect due to the small sample size. The highest decline of efficiency occurred 

with the CRMSE of monthly values (from 0.56 to 0.41) but the 0.41 is still not lower than the 

efficiency of the other best methods, except Craddock-test. Note that the observed efficiencies 

of the Craddock-test are based on a partial contribution (i.e. 7 networks were homogenised 

from the available 15), therefore they are not fully appropriate for making comparisons with 

the results of full Benchmark experiments.  

 

When comparisons are made between the performance of ACMANT and the performance of 

other best homogenisation methods in this study, the “other best methods” are composed by 

PRODIGE main, PRODIGE trendy, PRODIGE monthly and MASH main. Although the 

group of the best methods is wider, it includes also Craddock-test, USHCN and the newly 

developed HOMER of the COST HOME team, good test results of full Benchmark 

experiments are available only for PRODIGE and MASH. There are full contributions also 

with USHCN, but the USHCN belongs to the best methods for other reason than the observed 

efficiencies (that are not too high), i.e. the USHCN has a stably low false alarm rate, which is 

an important positive feature, but out of the analyses of this study.      
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4. FURTHER TEST EXPERIMENTS WITH ACMANT 

 

4.1. Tests with the “Big Benchmark” 

 

Big Benchmark is another (bigger) test dataset than the official Benchmark, and its creator is 

also Victor Venema. The original reason of its creation was to test the fully automatic 

USHCN software with a test dataset that is similar to the true observational temperature 

dataset in the United States. The statistical properties of Big Benchmark are similar to those 

of Benchmark with two important exceptions: (i) The Big Benchmark is much bigger than 

Benchmark, it contains 200 surrogated and 200 synthetic network, (ii) In Big Benchmark 

networks may contain 9 or 15 time series, but never only 5 time series. Note that the 

Benchmark surrogated temperature dataset consists of 15 networks, and 9 of them contains 

only 5 time series. For this reason, unfortunately, test results with Big Benchmark are not 

directly comparable with the Benchmark result, although they still can be interesting. 

 

ACMANT was subdued to a blind test with the first 100 surrogated networks of Big 

Benchmark. The efficiency turned out to be higher than with the official Benchmark (Table 

2), likely due to the denser networks of Big Benchmark. For making fairer comparisons, 

characteristics for subsets of fixed network-sizes are also shown. Note however, that the 

number of networks in the official Benchmark with 9 (15) time series is only 4 (2), therefore 

the opportunity to draw profound conclusions from these results is very limited. Due to the 

small sample-size in Benchmark, network-mean errors have not been calculated for subsets of 

fixed network-sizes. 

 
Table 2. Efficiency characteristics with ACMANT for the official Benchmark (OB) and Big Benchmark 

(BB). nt = network, denotations in the headline are the same as in Table 1 

Test-data CRMSE(m) CRMSE(a) RMSE(t) RMSE(nt1) RMSE(nt2) 

OB, 9 series / nt 56.5 72.1 74.2   

BB, 9 series / nt 56.2 74.1 71.6   

OB, 15 series /nt 58.4 78.0 84.0   

BB, 15 series /nt 62.2 80.9 85.0   

OB, all networks 56.3 72.8 76.8 38.2 54.4 

BB, all networks 60.1 78.5 79.6 40.5 55.5 

 

The results with the Big Benchmark experiment indicate that the performance of ACMANT is 

stably high for dense networks of data with high spatial correlations. The observable 

efficiency characteristics here are higher than those were achieved with the other best 

homogenisation methods during the Benchmark experiment, but for making correct 

comparisons with them, further common blind test experiments would be needed. 

 

 

4.2. ACMANT with changing parameters 

 

The second unit of the Caussinus-Lyazrhi criterion (sect. 2.2, eq. 5) is a penalty-term. Its 

effect is that higher number of change-points (K) is allowed only when the fitting of the step 

function to the data becomes substantially better with the increase of K. In the present 

experiment this penalty-term is supplied with coefficient p (eq. 6), and it is varied between 1 

and 7 in the pre-homogenisation part of the procedure. (In the final homogenisation p always 

equals 1.) 
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The effect of increasing  p is that only the most significant inhomogeneities can be filtered out 

during the pre-homogenisation. As the aim of the pre-homogenisation is just to eliminate the 

largest biases of the raw data, the application of p > 1 in the pre-homogenisation might result 

in higher efficiency than the basic version. The results of the experiment are shown in Fig. 1. 

In the figure the mean efficiencies for the other best methods are also shown for making 

comparisons. 
 

  

  

 
Figure 1. Efficiency in reducing the RMSE / CRMSE error of raw data in function of p. a) CRMSE 

monthly, b) CRMSE annual, c) RMSE of individual trends, d) RMSE of network-mean trends for 1900-

1999, e) RMSE of network-mean trends for 1950-1999. Red horizontal lines represent the mean efficiency 

of full experiments with PRODIGE and MASH during the Benchmark homogenisation 
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Two maximums appear in function of p, the first is at p of 1 – 1.5, while the other is at  p of 

4.5 – 5.0. I cannot explain this double optimum, even do not know whether it would be 

similar for other datasets, or it is a peculiarity of Benchmark, more precisely the examined 15 

networks of the surrogated temperature dataset of Benchmark. The absolute maximum of 

observed efficiency is p = 1 for the monthly CRMSE, p = 1.5 for the network-mean bias for 

1950-1999, while for the other efficiency measures the absolute maximums are with p = 4.5. 

The variation of efficiency is small in Fig. 1a and 1b, moderately large in Fig. 1c, while quite 

large for network-mean biases (Fig. 1d and 1e). The efficiency of ACMANT is slightly higher 

than that of PRODIGE and MASH in annual CRMSE, substantially higher than that of 

PRODIGE and MASH in monthly CRMSE, while for efficiencies in trend-bias reduction this 

relation is parameter-dependent. 

 

Finally I note that I made another experiment varying another parameter of ACMANT, i.e. 

the exponent of the denominator in eq. 42 of Domonkos (2011a), but in that case the observed 

variation of efficiency was much less than in the presented case. 

 

 

5. DISCUSSION AND CONCLUSIONS 

 

The study of Venema et al (2012) contains several statements about the performances of the 

methods participated in the Benchmark experiment. Now two of them about the late 

ACMANT are quoted here, for discussing if we have better understanding after the 

examinations presented. The two statements are (i) “ACMANT late contribution suggests that 

ACMANT is currently the most accurate method available”, and (ii) “ACMANT late is 

optimized based on the benchmark data itself. It is thus not clear how much of this 

performance would be realised in an application to a real dataset.” 

 

 First it has to be made clear that the projection of the observed efficiency results to the 

application to real data has limitation due to the differences between the surrogated data and 

real data that obviously exist in spite of the effort has been made to have the surrogate data 

similar to the real data. However, this limitation is not specific for ACMANT. An exception 

could be the harmonic annual cycle of station effects, which is exploited more intensively by 

ACMANT than by any other homogenisation method. However, the analyses of Sect. 3 

proved that its effect is minor if any, in raising artificially the performance of ACMANT.   

 

A more serious problem is that 15 networks of data is not very much either to find an 

optimum parameterisation or to achieve an accurate validation. It is because the within 

network errors are often interdependent and the distribution of the degree of errors is non-

normal, but rather exponential. For illustrating the latter, a brief statistic of the network-mean 

biases for 1900-1999 in the Big Benchmark experiment is presented here. The absolute value 

of the bias was below 0.5°C in 94 cases (from the examined 100), in four cases the bias was 

between 0.51 and 0.63 (°C), but the highest two biases were 0.83°C and 1.20°C. The likely 

explanation is that rare unfavourable coincidence of change-points in different time series, 

missing data, as well as unfavourable interference with unusually high noise may result in 

large homogenisation errors even with such a sophisticated method as ACMANT. This fact 

limits the opportunity to draw final conclusions from the experiments with the 15 surrogated 

temperature networks, and Big Benchmark was examined only with ACMANT. 

 

Both the Big Benchmark experiment and the parameterised examination showed that the 

performance of ACMANT is more stable with respect to the reduction of monthly and annual 
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CRMSE errors than in the reduction of trend-biases. The decrease of monthly CRMSE is 

spectacularly greater with ACMANT than with any other homogenisation method, and this 

difference is not sensitive to the chosen set of parameters of ACMANT. The performance of 

ACMANT in this characteristic may fall onto the level of the other best homogenisation 

methods only when the annual cycle of biases is entirely removed from the test datasets, 

which is, however, an unrealistic condition for the observed temperature data of mid- or high 

geographical latitudes. This good result with ACMANT is a consequence of the sophisticated 

treatment of different time-scales (i.e. multi-annual, annual and monthly) from which only 

one piece is the bivariate detection with two annual variables in the Main Detection segment. 

 

The main conclusions are as follows: 

- All the examinations confirm that ACMANT belongs to the family of the best 

homogenisation methods (i. e. PRODIGE, MASH, Craddock-test, HOMER and USHCN). 

- ACMANT is particularly effective in reducing the RMSE of monthly temperature data. 

When dense networks with high spatial correlations are treated, this favourable 

characteristic of ACMANT is very stable. This characteristic of ACMANT might have 

importance in the future in providing input data for daily data homogenisation. 

- The performance in trend-bias reduction is more parameter-dependent than in the 

reduction of RMSE errors. The examinations presented do not seem to be sufficient to 

find the optimal parameterisation of ACMANT, thus further analyses are needed. 
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1. INTRODUCTION 

 

In the practice there are numerous methods and software for daily data homogenization but in 

general without any exact theoretical, mathematical basis. The essence of the arising 

theoretical, methodological questions can be formulated as follows. 

- It is necessary to clarify that the homogenization or correction of data series is a 

distribution problem instead of a regression procedure. 

- Such correction methods and validation characteristics should be applied which are in 

accordance with the above mentioned aim of homogenization. 

- The methods applied in the practice also have to be examined theoretically in such a 

respect. For example there is the question what is the effect of the regression based 

methods for the higher order moments of distribution.  

 

 

2. RELATION OF DAILY AND MONTHLY HOMOGENIZATION 

 

2.1 The general structure of daily data homogenization 

 

If we have daily data series the general way of homogenization is, 

- calculation of monthly series, 

- homogenization of monthly series taking advantage of the larger signal to noise ratio, 

- homogenization of daily series using the detected monthly inhomogeneities. 

 

So we have the question how can we use the valuable information of detected monthly 

inhomogeneities for the daily data homogenization? 

 

 

2.2 A popular procedure e.g. the variable correction methods 

 

The typical steps of the procedure are as follows. 

1. Homogenization of monthly series:    

 Break points detection, correction in the first moment (mean).   

 Assumption: homogeneity in higher order moments (e.g. st. deviation). 

 

2. Homogenization of daily series:    

There is a trial to homogenize also in higher order moments.   

The used monthly information are only the detected break points. 

 

However the following questions are arising at this procedure: 

- Is it adequate model that we have inhomogeneity in higher moments only at daily 

series but not at monthly ones? Can this model be accepted according to the 

probability theory?  
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- Why are not used the monthly correction factors for daily homogenization? It seems to 

lose some valuable information obtained during the monthly homogenization. 

 

 

2.3 Problem of inhomogeneity in the higher order moments 

 

There is a common assumption that the correction in mean is sufficient for monthly and 

annual series, and that the correction of higher order moments is necessary only in the case of 

daily data series. In general, it is tacitly assumed that the averaging is capable to filter out the 

inhomogeneities in the higher order moments. However, this assumption is false, for example, 

if there is an inhomogeneity in the standard deviation of daily data, we may have the same 

inhomogeneity in monthly data. 

 

Proof.:  

Daily data are )(tX  30,..,2,1t  , monthly average is 



30

1

)(
30

1

t

tXX . 

 

Let us introduce an inhomogeneity in the standard deviation for the daily data: 

    )(E)(E)()( tXtXtXtX ih  ,   30,..,2,1t . 

The expected value is unchanged:    )(E)(E tXtX ih  , but the standard deviation has 

changed:      )(D)(D tXtX ih  . 

 

Let us see the new monthly average: 



30

1

)(
30

1

t

ihih tXX . 

The expected value is unchanged:     XX ih EE  , but the standard deviation changed with 

the same measure: 

   XtXtXtXX
ttt

ihih D)(
30

1
D)(

30

1
D)(

30

1
DD

30

1

30

1

30

1



























 



  . 

 

For illustration an example is presented on Figure 1. The example series is from the daily 

benchmark dataset of COST Action HOME: network\000111\hotmd00011636d station. 

 

On the figure the annual mean of the daily values can be seen. By the figure the generated 

higher order daily inhomogeneities appear also at the annual values! That means the 

averaging is not capable to filter out the inhomogeneities in the higher order moments. 
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Figure 1. Annual mean series of the original and inhomogeneous daily series from the benchmark dataset 

of COST HOME: network\000111\hotmd00011636d station 

 

 

3. DAILY BENCHMARK RESULTS FOR MASH 

 

A daily “benchmark” (validation) dataset was created within COST Action ES0601 HOME in 

order to evaluate the homogenization methods used for daily data. Altogether 12 networks of 

daily data series with known breaks were generated where one network included 5 stations 

with surrogate daily temperature series for period 1908-2007. The inhomogeneities of the 

validation dataset were generated by switching distribution of stations (to simulate relocation 

- only for pairs), changing mean and changing higher moments, created for the length of 100 

years with 5 breaks in each of the series, with no trends, no outliers, no missing data, no 

annual cycle (seasonality) of the breaks. For the purpose of the validation of methods 6 

networks (30 stations) were used. The MASH method (Multiple Analysis of Series for 

Homogenization; Szentimrey, 1999, 2008, 2011) was tested for all these networks. Opposite 

to the fact that the daily series were generated with inhomogeneities also in higher moments 

and MASH was developed for homogenization in mean (first order) we thought instructive to 

perform the test procedure. For evaluation of the test results the RMSE and centered RMSE 

statistics were calculated for the difference series: 

 

)()()( tXtXtZ ORIINHOINHO  , )()()( tXtXtZ ORIHOMHOM  , where 

)(tX ORI : original homogeneous series, )(tX INHO : inhomogeneous series,  

)(tX HOM : homogenized series. The result statistics are in Table 1. 
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Table 1. The test statistics for evaluation of MASH 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Mean 

RMSE(ZINHO)     RMSE(ZHOM)    CRMSE(ZINHO)    

CRMSE(ZHOM) 

0.619         0.680         0.615         0.588 

0.527         0.360         0.441         0.359 

0.361         0.243         0.316         0.243 

0.603         0.235         0.319         0.204 

0.672         0.330         0.669         0.325 

0.622         0.263         0.567         0.262 

0.380         0.372         0.372         0.359 

0.811         0.446         0.771         0.364 

0.494         0.276         0.493         0.237 

0.514         0.395         0.507         0.395 

0.737         0.346         0.727         0.316 

0.409         0.329         0.392         0.263 

0.732         0.357         0.623         0.356 

0.657         0.451         0.655         0.451 

0.230         0.111         0.223         0.106 

0.611         0.542         0.602         0.488 

1.088         0.393         1.068         0.387 

0.515         0.501         0.514         0.422 

0.659         0.216         0.627         0.216 

0.793         0.314         0.778         0.275 

0.454         0.345         0.445         0.333 

0.599         0.388         0.599         0.383 

0.496         0.497         0.490         0.491 

0.332         0.150         0.329         0.148 

0.663         0.305         0.608         0.303 

0.494         0.321         0.440         0.317 

0.548         0.266         0.548         0.236 

0.525         0.286         0.521         0.228 

0.670         0.399         0.663         0.351 

0.545         0.478         0.486         0.447 

0.579         0.353         0.547         0.328 

 

 

4. EXAMINATION OF PARALLEL MEASUREMENTS 

 

The basic assumption of the variable correction methods for daily series is that the correction 

in mean is sufficient for monthly and annual series, but in case of daily data series, the 

corrections should vary according to the meteorological situation of each day in order to 

represent the extremes. This idea was published in the paper by Trewin and Trevitt (1996), 

where parallel measurements were examined and compared to each other. Since then on the 

basis of the ideas formulated in the paper, a number of variable correction methods have been 

developed with the declared aim of being capable of correcting the daily data not only in 

mean (first moment) but also in the higher order moments. For example, we mention the 

following methods: higher order moments (HOM) method by Della-Marta and Wanner 

(2006) and spline daily homogenization (SPLIDHOM) method by Mestre et al. (2011), and 

there are numerous other similar methods applied in practice.  However, in our humble 
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opinion, during the examinations only some physical experiences were considered without 

any exact theoretical, mathematical formulation of the problem. The empiric interpretation 

and formulation seem to be a misunderstanding. Moreover, there are some mathematical 

statements at the description of the methods – e. g., capability to correct the higher order 

moments – but without any proof, and this practice is of course contrary to the mathematical 

conventions.  

 

 

4.1 Examinations by Trewin and Trevitt (1996) 

 

First here is a quotation from the paper of Della-Marta and Wanner (2006): “One of the most 

robust methods capable of adjusting the higher-order moments of daily temperature data is 

that of Trewin and Trevitt (1996).” Trewin and Trevitt (1996) intended to homogenize daily 

data series in order to create composite temperature records. The following sentences are from 

their paper: “It is therefore necessary to make use of climatological records with 

inhomogeneities, and to develop a means of removing or minimizing the impact of 

inhomogeneities on these records. One way of doing this is by adjusting all parts of a record 

to be comparable with some ‘reference period’. Standard procedures for such adjustments in 

mean temperatures have relied on the implicit assumption that, if two neighbouring stations 

both have homogeneous records over some period of time, the difference in daily maximum 

(or minimum) temperature between them will be a constant for any day in a given month of 

the year. This implies that the difference in monthly means will be a constant for that month 

from year to year.” In general it is not true of course, but after some examination of real 

station data series they obtained the following result: “This is observed at Armidale (P. Burr, 

pers. comm.), ..,where the difference in minimum temperature between the town centre site 

used in this study and a second site approximately 2 km to the east, in the outer part of the 

town, has a mean value of 1.5 to 2 °C , but can increase to 4 °C on cold, clear nights. The 

assumption that the temperature difference between any two nearby sites is always constant 

must therefore be questioned.” 

 

The above conclusion was all right, but the next conclusion is a little bit surprising for us: 

“The relationship between the temperature characteristics of the two sites in each pair was 

examined, with the aim of determining an appropriate method for use in extrapolating records 

at one site to records at the other.” 

 

Probably here is the origin of the methods that apply varying corrections per days, and at this 

step a regression or interpolation problem was obtained for homogenization instead of the 

adequate distribution problem. Three interpolation techniques were considered by Trewin and 

Trevitt (1996) namely: the ‘traditional‘ constant-difference approach, the ‘regression’ method, 

and the frequency distribution matching. The methods will be detailed in Section 6.1. 

 

 

4.2 Mathematical examinations of parallel measurements 

 

What was the reason of the development of the variable correction methods? Essentially, an 

observed phenomenon at the extremes, namely the differences of parallel measurements are 

larger in case of extremes. In our opinion, this observed phenomenon has a simple and logical 

reason, and it is superfluous to look for some complicated physical explanation for the 

inhomogeneity. The simple reason is that the extremes may be expected at different moments 

in case of parallel measurements, or in other words, there may be systematic biases in rank 
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order! It is a natural phenomenon, and for illustration a trivial example is presented according 

to the probability theory.  

 

 

Example 4.2 

 Let   )1,0)(1 NtY  ,  1,0)(2 NtY    nt ,..,2,1  be standard normally distributed series with 

expected values     0)(E)(E 21  tYtY , with standard deviations     1)(D)(D 21  tYtY , and 

with correlation between the series   )(),(corr 21 tYtY   nt ,..,2,1 . 

 

Then the mean difference   0)()(E 21  tYtY  of course, however, the difference )()( 21 tYtY   

is not independent from the elements )(1 tY , )(2 tY  if 1 , and, e.g., the conditional 

expectation of difference )()( 21 tYtY   given )(1 tY , or equivalently the regression of difference 

)()( 21 tYtY   on )(1 tY  is     )(1)()()(E 1121 tYtYtYtY   . 

 

Consequently, the difference )()( 21 tYtY   is an expectedly monotonous increasing function of  

)(1 tY  if 1 . This is the theory, but it can be demonstrated in practice too. We generated 

such standard normal series by the Monte Carlo method with parameters 9.0 , 1000n . In 

this case,   )(1.0)()()(E 1121 tYtYtYtY   and the difference series )()( 21 tYtY   as a function 

of series )(1 tY  is plotted in Fig. 2. 

 

 
Figure 2. Difference series )()( 21 tYtY   as a function of series )(1 tY  

 

It is evident that the conditional expectation of difference )()( 21 tYtY   is monotonous 

increasing function of )(1 tY , consequently the difference may be larger mainly in the case of 

extreme values. It is a general phenomenon not only observed for meteorological 

measurements. Presumably this experience is the reason for the idea that the correction of 

daily data should vary according to the meteorological situation of each day, in particular on 

the basis of some regression models. But it is a misunderstanding of the homogenization 

problem.  
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5. MATHEMATICAL FORMULATION OF THE DAILY DATA 

HOMOGENIZATION 

 

Unfortunately, the exact theoretical, mathematical formulation of the problem of 

homogenization is generally neglected in meteorological studies. Therefore, we try to 

formulate this problem in accordance with mathematical conventions. First of all it is 

necessary to emphasize that homogenization is a distribution problem and not a regression 

one. 

 

Notation 

Let us assume we have daily data series: 

)(1 tY  nt ,..,2,1 :  candidate time series of the new observing system. 

)(2 tY  nt ,..,2,1 :  candidate time series of the old observing system. 

nT 1 :  change-point,  series )(2 tY  Tt ,..,2,1  can be used before  

and series )(1 tY  nTt ,..,1  can be used after the change-point. 

 

Definition 

The aim of homogenization is the adjustment or correction of values )(2 tY  Tt ,..,2,1  in 

order to have the corrected values )(2,1 tY h  Tt ,..,2,1  with the same distribution as the 

elements of series )(1 tY  Tt ,..,2,1 , i.e.: 

 

    ytYytY h  )()( 12,1 PP ,      ,y  , Tt ,..,2,1 . (1) 

Eq. (1) means the equality in distribution: )()( 12,1 tYtY
d

h    Tt ,..,2,1 . 

 

Consequence  

Within the same climate area, if the variables )(),( 21 tYtY  Tt ,..,2,1  have identical 

distribution, i.e., )()( 12 tYtY
d

   Tt ,..,2,1 , then the merged series )(2 tY  Tt ,..,2,1 , )(1 tY

 nTt ,..,1  is homogeneous. 

 

Example 

Let us assume we have parallel measurements )(1 tY , )(2 tY  nt ,..,2,1  within the same 

climate area with distance 50 m between the locations. Then, as a consequence of 

micrometeorological processes, the series are probably different, )()( 12 tYtY   nt ,..,2,1 , but 

they may be equal in distribution, )()( 12 tYtY
d

   nt ,..,2,1 .  In this case, the mixed series 

)(2 tY  Tt ,..,2,1 , )(1 tY  nTt ,..,1  can be taken as a homogeneous series. This mixed 

series is equivalent with the homogeneous series )(1 tY  nt ,..,2,1  also in respect of the 

distribution of extremes. 

 

Returning to the general question, we have to see clearly that the aim of homogenization is to 

correct the distribution of )(2 tY  according to )(1 tY , instead of the estimation or regression of 

)(1 tY on )(2 tY ! Moreover, the correction of distribution is equivalent in essence with the 

correction or adjustment of the moments. The aim of the homogenization expressed in k
th

 

moments: 
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                                kk

hk tYtYm ))((E))((E 12,1      ,...2,1k  ; Tt ,..,2,1 ,                          (2) 

 

where E  is the usual notation of the expected value or mean equivalently.  

Some remarkable formulas for the moments: 

 

 1mE  ,  2

12

2 mmD   (3) 

 

where E denotes the expected value or mean, and D denotes the standard deviation. 

 

In practice, numerous methods indicate the capability to correct the higher order moments but 

without any exact proof.  

 

 

6. THE VARIABLE CORRECTION METHODS 

 

We return to the methods suggested by Trewin and Trevitt (1996) which was mentioned in 

Section 4.1. Essentially, the underlying principles of the variable correction procedures 

developed later were formulated based on these methods. We do not agree with these 

principles as explained by our argument in Sections 4.1 and 5, but let us see some details and 

properties of the mathematical consequences. 

 

 

6.1 The Trewin and Trevitt (1996) methods for parallel measurements 

 

The short description is cited word for word again from the paper of Della-Marta and Wanner 

(2006):  

 

“Trewin and Trevitt (1996) present three different methods to build a composite daily 

temperature series. Essential to the methods is the existence of simultaneous (in time) 

observations from the new and old observing system. These parallel measurements had been 

taken based on the recommendations of Karl et al. (1995), who suggest that a minimum of a 

2-yr overlap between the new and old observing systems be made. In Australia, for example, 

this practice has only become routine since around 1993 and so many inhomogeneities needed 

to be adjusted using the traditional constant difference techniques with neighboring reference 

stations. In this way, Trewin (2001) created a homogenized daily temperature dataset that has 

subsequently been used by Collins et al. (2000) to assess trends in the frequency of extreme 

temperature events in Australia. 

 

The three methods they intercompared were constant difference, linear regression, and 

frequency distribution matching. 

 

The constant difference approach simply adjusted the older data with the newer data using the 

mean of the daily differences in the simultaneous (parallel) measurements.  

 

The linear regression method fitted a linear model to the difference in daily simultaneous 

measurements between the two observing systems and the temperature at the older station. 

This model could then be used to adjust daily temperatures at the older station differentially 

depending on the temperature, thereby adjusting the higher-order moments. 
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Their third method determines the frequency distribution of each site during the simultaneous 

measurement period. The adjustment for each desired percentile is calculated simply as the 

difference between the two percentiles. This method assumes that there is no systematic bias 

in the rank order of the temperatures at the two sites.  

 

They show that both the regression method and the frequency distribution matching technique 

have certain advantages; however, if the homogenization of extreme events is most needed, 

then their frequency distribution matching technique is more accurate.” 

 

Our mathematical comments to the methods are as follows. 

 

 

6.1.1 Constant difference approach 

 

Yes, this approach is correct if the inhomogeneity is in mean or expected value or first 

moment, which are the same with different names. 

 

 

6.1.2 Linear regression method 

 

This procedure is absolutely wrong for homogenization. To demonstrate the problem, a trivial 

counter-example is presented. 

 

Theorem  

Let us assume that the different series )(1 tY , )(2 tY   nt ,..,2,1  have identical distribution, 

with expected values     0)(E)(E 21  tYtY , standard deviations     1)(D)(D 21  tYtY , and 

correlation between the series   )(),(corr 21 tYtY   nt ,..,2,1 . 

 

(i) Then the linear regression of difference )()( 21 tYtY  on )(2 tY  is   )(1 2 tY , 

consequently, the homogenized series after the suggested adjustment, 

 )()1()()( 222,1 tYtYtY h  )(2 tY  and )(2 tY  is just the linear regression of )(1 tY

on )(2 tY . 

 

(ii) Moreover, since the expected values  )(E 2,1 tY h     0)(E)(E 21  tYtY , therefore  – 

using Eq. (3) – , the second moment of )(2,1 tY h is equal to the variance 

  1)(D 2

2,1

2  tY h , while the common second moment of )(1 tY , )(2 tY  is equal to the 

variances     1)(D)(D 2

2

1

2  tYtY . Therefore, the second moment was decreased from 1 

to 12  during the regression. 

 

Summing up, according to (i) this procedure is equivalent with the simple linear regression of 

)(1 tY on )(2 tY . Furthermore, according to (ii) the following statement about the method is 

absolutely false: “This model could then be used to adjust daily temperatures at the older 

station differentially depending on the temperature, thereby adjusting the higher-order 

moments.” The truth is just the opposite, since the correct second moment was damaged at 

our counter-example. 
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6.1.3 Frequency distribution matching technique 

 

The main problem is the following assumption which is the fundament of the method: “This 

method assumes that there is no systematic bias in the rank order of the temperatures at the 

two sites.” 

 

Unfortunately, the reality and the mathematics are much more complicated, and the above 

assumption cannot be accepted as it is demonstrated in Fig. 2. The bias in rank order depends 

on the stochastic connection, and there may be systematic bias, since )(1 tY , )(2 tY  are not 

monotonous increasing functions of each others. At this method, the adjusted )(2,1 tY h  is 

obtained essentially by a simple exchange )(2 tY  for )(1 tY  according to the rank orders. Why? 

For example, if )(1 tY , )(2 tY  were equal in distribution then such an exchange would not be 

necessary. 

 

 

6.2 The general type of variable correction methods applied in the practice 

 

On the basis of the former principles described in Sections 6.1.2 and 6.1.3 (regression and 

frequency distribution matching), a number of variable correction methods have been 

developed during the last years. The new improvement of these methods is that they do not 

need overlap observations, instead of this they use information from nearby reference stations, 

for example higher order moments (HOM) method by Della-Marta and Wanner (2006) and 

spline daily homogenization (SPLIDHOM) method by Mestre et al. (2011).  We do not want 

to criticize the details of these methods however, we express again our skepticism on their 

common fundamental principles which were based on a pseudo problem demonstrated in 

Example 4.2. Moreover, we repeat the following sources of errors for consideration.  

- The assumption of the frequency distribution matching technique, i.e., there is no 

systematic bias in the rank, cannot be accepted. 

- The regression methods are not adequate to correct the higher order moments.  

 
Our last remark is connected also with the higher order moments. In general, the papers about 

these methods indicate the capability to correct the higher order moments, but this statement 

is always without any exact mathematical proof. We are skeptic, however if somebody could 

send us a nice proof, we would be grateful for it. 

 

 

7. SOME REMARKS ABOUT THE HOMOGENIZATION IN THE HIGHER-ORDER 

MOMENTS 

 

We suggest considering the following remarks when developing homogenization methods 

with the capability to correct also the higher order moments. 

 

Remark 1 

The correction in the first two moments or, equivalently, in mean and standard deviation can 

be formulated by using the notations defined in Section 5 as follows: 
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  )()(
)(

)(
)()( 22

2

1
12,1 tEtY

tD

tD
tEtY h     Tt ,..,2,1  , (4) 

 

where  )(E)( 11 tYtE  ,  )(E)( 22 tYtE   are the means, and  )(D)( 11 tYtD  , 

 )(D)( 22 tYtD   are the standard deviations. Then   )()(E 12,1 tEtY h  ,    )()(D 12,1 tDtY h  .  

 

In general, the detection of the change points and the estimation of correction factors are 

suggested to be based on the examination of monthly data series because of the larger signal 

to noise ratio. 

 

Remark 2 

If the joint distribution of the series is normal,  )(),()( 111 tDtENtY  ,  )(),()( 222 tDtENtY   

 nt ,..,2,1  and )(2,1 tY h   Tt ,..,2,1  is calculated according to Eq. (4), then )(),( 12,1 tYtY h

 Tt ,..,2,1  have identical distribution: )()( 12,1 tYtY
d

h    Tt ,..,2,1 . Consequently, the mixed 

series )(2,1 tY h  Tt ,..,2,1 , )(1 tY  nTt ,..,1  is homogeneous, that means it is sufficient to 

correct only the first two moments in case of joint normal distribution. 

 

Proof 

Owing to Remark 2 and the joint normal distribution,  )(),()( 112,1 tDtENtY h    Tt ,..,2,1 . 

 

 

8. CONCLUSION 

 

It is necessary to define the exact mathematical theory for homogenization of climate data 

series. Homogenization is a probability distribution problem, and the methods applied in 

practice should be theoretically evaluated in this respect. 
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Abstract 

 
The ReDistribution Method (Petrović, 2003) is independent of the temporal consistency of data series. 

This feature allows dealing with any data series subset, regardless of the gaps that might be featured in 

the series. 

 

The ReDistribution Method might be successfully applied to diagnose causes of inhomogeneities more 

efficiently. Custom subsets might be extracted from the series by any criteria. For the observed wind 

direction and speed series, these subsets might be made according to wind speed categories. 

 

The given example with three wind speed categories indicates different causes of the inhomogeneities 

of wind direction series, depending on the analyzed subset category. Detailed analysis of the yielded 

results might be helpful in estimating causes of the detected inhomogeneities. Homogenization method 

that should be applied afterwards must take these results into account, which opens new discussions 

about the most adequate procedure. 

 

 

1. A BRIEF OVERVIEW OF THE METHOD 

 

The ReDistribution Method is distribution-oriented method for detection of inhomogeneities 

in data series. The basic principle of the method is a comparison of two consecutive 

distributions over fixed moving window span. The output value is a ReDistribution Index 

(RDI) as a measure of variations of distribution in time. This index is calculated as 

N

N
RDI r  

where Nr is the number of redistributed values (as a half sum of redistributed frequencies from 

all value categories) and N is the total number of values in the distribution (Petrović, 2004). 

Hence, the values of RDI mathematically range from zero (the ''perfect match'' of 

distributions) to unity (change of complete range of featured values without overlaps). Critical 

values of RDI, however, are the peak values (maximum change of distribution) of a 

magnitude significantly higher than the noise level (Fig. 1). 

 

 

1.1 Special features of the method 

 

The ReDistribution Method uses a fixed, user-defined number of observations for calculating 

distributions inside a moving window span. It is usually a whole number of years, such as 2, 

4, or 6 years. It is important to emphasize that only observed values are used for calculations, 

which preserves possibility to use any desired number of observations. As a consequence, the 

ReDistribution Method is independent of the temporal consistency of data series. 
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Also, a mass of data builds distributions, while small gaps, outliers and/or erroneous values 

are minimized in distributions due to their very low frequency. Such values are diminished 

into a noise level of the RDI series. This practically means that no strict quality control or 

filling in missing data are necessary. 

 

Finally, method's ability to run more than one series at a time is very suitable for wind data, 

since the complete wind data information consists of at least two independent series (direction 

and speed). 

 

Bearing all these special features in mind, the ReDistribution Method allows dealing with any 

data series subset, regardless of its temporal inconsistency. Such subsets might be user-

defined in order to inspect some special cases and thus detect and diagnose inhomogeneities 

more efficiently. 

 

 

2. CUSTOM DATA SUBSETS 

 

Custom data subset is any selection of data that meets the user-defined criteria. For the 

observed wind direction and speed series, these subsets might be made according to wind 

speed categories or angular sections (azimuth intervals) of wind direction. An example of 

three subsets by wind speed criteria is given as follows: 

 weak winds, up to 2 m/s; this subset features the impact of instrument sensitivity and 

introduced instrument friction; 

 moderate winds, between 2 m/s and 4 m/s; such subset is under influence of 

surrounding objects near the instrument; 

 strong winds, over 4 m/s; this subset reveals serious wind redirections, since it is 

influenced by instrument orientation rather than change of general synoptic circulation 

that produces winds of this category. 

 

Inhomogeneities that are featured in such subsets give an additional information about their 

probable cause, as described in the given definitions. 

 

Naturally, such subsets might be used for detection of inhomogeneities in wind direction only, 

since the wind speed range is significantly reduced and thus inconvenient for wind speed 

homogeneity assessment. 

 

 

3. EXAMPLE OF WIND SPEED CATEGORY SUBSETS 

 

 

3.1 Initial settings and standard run of the method 

 

As an example, hourly series of wind direction and speed of Niš for the period 1981-2010 is 

examined. 

 

Standard run of the ReDistribution Method is made with the complete dataset, with moving 

window length of three years. The returned RDI series of wind direction and speed shows 

significant break points (Fig. 1). However, causes of the breaks appears one moving window 

before the RDI peak (in this example it is three years earlier). 
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Simultaneous peaks of both RDI series for direction and speed are recognized in 1990, and 

2007 which, at present, indicate problems with instrument or station surroundings in 1987 and 

2004, since metadata indicate preserved station location. Wind speed breaks are noted in 

1984, 1993 and 1999, indicating problems with anemometer in 1981, 1990 and 1996. On the 

other hand, wind direction breaks might indicate problems with instrument orientation or 

change of surroundings, which is a seldom case without wind speed breaks. 

 

 

3.2 Subset runs of the method 

 

The runs of the ReDistribution Method over data subsets defined by given wind speed criteria 

reveal some more information about the breaks. Initial settings of moving window length are 

reset to use an average number of records that cover approximately three-year period. This 

number varies from one subset to another depending on the size of a subset. Thus, weak wind 

subset had the window length of 5000 records, moderate wind had 3000 records, while strong 

winds had only 400 records in the moving window data span. These figures approximately 

correspond to relative frequencies of wind by the defined subsets. 

 
 

Figure 1. RDI series of wind direction and speed (all data), Niš, 1984-2010 

 

  

The original graphs are created in number of records' scale, which reveals the exact 

information about inhomogeneities. However, better comprehension for users might be 

achieved using the time scale. Although it distorts the original information (due to uneven 

frequency of wind speeds over a category), it is important to have a proper information about 

the time of the detected break point, while the magnitude of the change remains intact. 

 

Uneven response of corresponding RDI series is a basic information for break diagnostics. 
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4. RESULTS 

 

The case of the break point in 2004, indicated by the RDI peak in 2007 is used as an example 

of the diagnostic part of the method, since it is very clear both in direction and in speed series 

(Fig. 1). Therefore, the explanations of the results will be given through the time period 2001-

2010. 

 

 
 

 

The run of the ReDistribution Method with weak wind subset indicates very regular and very 

significant peak of RDI series in 2007, which confirms the originally detected break in 2004 

(Fig. 2a). Different noise level before and after the break indicate a change of the instrument. 

Higher noise level after the break point indicate an instrument with more friction and less 

sensitivity to the winds. The redirection of the weak winds is quite obvious, introducing more 

winds throughout angular section between NNW and NE. On the other hand, the most 

frequent ENE wind has a bit reduced frequency. Finally, winds from the section ESE-W 

nearly disappeared (Fig. 2b). This disappearance of a significant angular section winds 

indicate an obstacle which is quite near the instrument.  

 

 
 

 

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

2001 2001 2003 2003 2005 2006 2008 2009

time

R
D

I

2004

2007

Figure 3. a) RDI series of wind direction for data subset of wind speed between 2 m/s and 4 m/s, Niš, 2001-

2010; b) wind directions before (in 2004) and after the break point (in 2007) 
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Figure 2. a) RDI series of wind direction for data subset of wind speed below 2 m/s, Niš, 2001-2010; b) 

wind directions before (in 2004) and after the break point (in 2007) 
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Moderate winds had he same detected break point, but with much smaller magnitude (Fig. 

3a). The wind redirection mostly affects NW winds, which frequency is reduced to nearly half 

of the value before the break. Also, some winds around ENE (NE and E) increased their 

frequencies, which explains the redirection process (Fig. 3b). This redirection is caused by an 

obstacle that appeared at some ten meters from the instrument, covering the angular section 

NW-NNE. This finally describes changes of instrument surroundings. 

 

The run of the ReDistribution Method with strong wind subset returned the same break point, 

but quite diminished and sunk into the noise level (Fig. 4a). Thus, it is hard to detect any 

homogenity break at this point with certainty, so such RDI series result in no inhomogeneities 

detected. The directions of these winds keep their distribution, which indicates the preserved 

station location (Fig. 4b). 

 

 
 

 

5. CONCLUSIONS 

 

This variation of the ReDistribution Method introduces new possibilities for break point 

diagnostics. While standard use of the method returns information about the time and roughly 

type of cause of detected breaks, assessment of custom data subsets' distributions might give 

more accurate description of the break points. This is particularly important when a good 

decision about the possibilities for homogenisation must be made. Besides that, high precision 

of break detection in temporal scale is preserved. 

 

One of the crucial disadvantages of the method variation is its time consumption. Since the 

calculation of the RDI series is time consuming itself, even more runs for every subset 

multiplies required time for work. Also, an user must have a lot of experience with wind data, 

from the measurement phase through digitalization to the final use of the data series for 

different assessments. 

 

Nevertheless, this variation of the ReDistribution Method will enhance the knowledge about 

the wind data series, especially distributions of wind direction as very little used element. 

Since different causes of the inhomogeneities might require different methods for 

homogenisation, the final questioning of the right choice for homogenisation method is still 

active task for the future. 
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Figure 4. a) RDI series of wind direction for data subset of wind speed over 4 m/s, Niš, 2001-2010; b) wind 

directions before (in 2004) and after the break point (in 2007) 
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Abstract 
 

Based on “original” Prodige homogenization software from Caussinus and Mestre (2004), full 

automatic detection and correction of artificial break points in climate records is developed, which is 

indispensable in handling large data sets. For the identification of breakpoints, scaled time series are 

compared to the other stations within the network. The detected breaks are corrected monthly by 

means of a multiple linear regression considering the annual cycle. The presented procedure is tested 

on benchmark data set of the COST-Action ES0601. In comparison to the power (performance) of 

other homogenization procedures, it is one of the most effective methods.  

 
 

1. INTRODUCTION 

 

It is a well-known fact that meteorological observations, in particular long-term records are 

inhomogeneous. In the climate change discussion, the need of analyzing precipitation series 

becomes obvious. Since for a robust trend analysis reliable data is a prerequisite, the data 

series investigated have to be homogeneous and of high quality. Inhomogeneities in time 

series may overlie real trends and may lead to wrong conclusions. 

 

Precipitation has a high spatial variability, varying with distance and being strongly effected 

by topography. For this reason investigation requires a dense network of stations; not only to 

identify the regional climate, but also to provide enough data allowing the correction of errors 

in the data series and increasing the overall certainty of the results. Large data sets pose an 

additional challenge for the homogenization.  

 

The examined data set contains about 2000 long-term precipitation series. In a first step, this 

study is focused on 118 stations, spanning 100 years of daily data and only few missing 

values (Fig. 1). The data has been digitized within the cooperative project KLIDADIGI by the 

Deutscher Wetterdienst and the Meteorological Institute of the University of Bonn.  

 

This paper is dealing with the challenge and the successful development of a fully automatic 

method. In section 2 the benchmark data set is short described. The development of the 

method is described in section 3. The validation results are presented in section 4 followed by 

conclusions and outlook in section 5. 
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a) 2833 monthly stations (50 yrs) b) 118 daily stations 

Figure 1. Location of long-term precipitation stations 

 

 

To date, for precipitation only partly manually methods are available, which, although being 

well known and tested, cannot be used, because of the required time and effort. This paper 

deals with this challenge and the successful development of an automatic method. 

 

A common and successful approach is the use of meta-data to identify potential 

inhomogeneities. This approach cannot be used in the present case, since for old time series, 

station history is almost not available. Many records were lost during the wars. The existing 

documents are incomplete and only partly digitized. Consequently, meta-data cannot be 

included in automatic methods, which are necessary for the more than 2000 stations 

mentioned above. However, it is still essential to use the documentation when available, to 

verify the detected break points and to validate the applied homogenization method (Fig. 7 

Zugspitze). 

 

 

2. BENCHMARK DATA BASE 

 

The new automatic method is tested on the artificial data set created for the COST (European 

Cooperation in Science and Technology) Action ES0601 (http://www.homogenisation.org). 

This data set was created for the comparison of existing homogenization software and is 

meanwhile openly available. It was created as described by Venema et al. (2012) using 

homogenized monthly observations as base. The surrogates imply artificial seasonal cycle and 

trends. Additionally, inhomogeneities such as outliers, trends and breaks are included to be 

detected and corrected in the COST Action blind study. 

 

The data consist of 15 networks with 5, 9, or 15 stations spanning 100 years of monthly data. 
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a) Added inhomogeneities b) Example of a surrogate temperature network 

(Victor Venema) 

Figure 3. Inhomogeneities added into the surrogate networks 

 

 

3. HOMOGENIZATION METHOD 

 

The homogenization method consists of three steps. 1) Classifying the stations into networks 

with comparable precipitation behavior - this allows a relative homogenization and reduces 

the false detection indicated by a true change in the precipitation trend 2) Detection and 3) 

Correction of breaks. The last two points base on a modification of the software Prodige 

(Caussinus and Mestre, 2004).  
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Figure 2. Overview over original and automatic Prodige 
 

 

The original Prodige method has some limitations, which are also inherited in the methods 

developed from the original and described in this paper. The limitations are: 1) A homogenous 

time series is homogeneous between detected breaks. 2) Artificial trends can only be corrected 

by setting additional breaks. 3) Regarding precipitation, the logarithmic ratio of two stations 

has to be normal distributed and the variance during the entire time series has to be constant. 

4) The disadvantage of Prodige being only partly automatic has triggered the development of 

a modified method as described in this paper. 
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3.1 Network selection 

 

For homogenization, measuring stations with similar climate conditions are needed. The 

selection of stations is based on daily precipitation over 1 mm. This is due to the fact that 

small precipitation amounts are strongly inhomogeneous. 

 

The data series are classified into regional networks of related precipitation characteristics 

using a principal component analysis followed by a Varimax Rotation. Input data are the 

previously introduced indices. Assuming the presence of inhomogeneities, precipitation 

values below 1 mm are deleted and the 30 years moving trend is subtracted before the 

networks are selected. This leads to much better-defined areas clearly corresponding to 

geographical sub regions. 

 

 

3.2 Detection 

 

The detection part as it is described by Mestre (2003a) depends on investigating logarithmic 

time series ratios yi,j of two stations i and  j  within the same climatic region (Sec.3.1) 

 

   
jiji, stationstation=y lnln 

  

An example for this difference time series yi, j  can be seen in Fig. 3. 

 

 

Figure 3. Log ratio of two surrogate time series in Network 4 based on the stations Retz and Krems 

 

 

The results of this pairwise comparison are possible breakpoints for each pairing within any 

network. The next task is to assign the breaks to the individual stations. 

 

Two approaches have been tested to automate this procedure. The first applies a threshold 

method and the second combines the neighbor stations to one reference station. 

 

For the first method the detected breaks per combination are expressed as vectors for each 

pairs of stations i and j. The break vector consists of the entries 0 (no break) and 1 (break) for 

every year, for example  0... 1 0 0 0 1 0 0 0=break ji, .  
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To estimate the break points for a single station i, only those stations j are used with a 

correlation 0.8ji,cor . All break vectors are combined to a single one, depending on the 

correlation. 


 

ji

jitj,i,

ti,
cor

corbreak
=break

,

,
 

 

The vector breaki has an entry for every year summarizing the detected breaks in the pairs. 

The selection of the threshold for a break is based on many empirical experiments. Several 

runs are preformed with decreasing thresholds. In this way first strong inhomogeneities are 

detected and corrected, before the small breaks are searched.  

 

The second method combines neighbor stations in the network to a single reference station. 

Only one comparison has to be preformed per station resulting in the direct detection of the 

breaks. The smaller the difference in climate signal from target and reference station the 

smaller are the breaks that can be found. Without breaks kriging would be the first choice, but 

in this case strong breaks in the nearest station cause a break in the reference series. For this 

reason the reference series is created from the mean of standardized time series of neighbor 

stations. 

 

  

stationsneighborofnumber

stationedstandardiz
= stationRefernce

k

i

 ln
 

 

The difference series can be calculated as 

 

    stationreferencestationedstandardiz=y ii ln . 

 

Then the detection algorithm is applied to all difference series yi. 

 

 

3.3 Correction 

 

The detected breaks are corrected by means of multiple linear regression with binary coding 

based on Mestre (2003b). The result is an offset between the means at breakpoint positions 

that can be corrected. This information is only relative, therefore the usual approach is to keep 

the last segment of annual values constant and correct backwards.  

 

In this paper a monthly correction factor was calculated by performing the regression for 

every month. But instead of taking the last segment as base the annual cycle is maintained on 

the condition that the range of standardized annual cycle within a network is smaller than two 

standard deviations (Fig. 4). This is fulfilled for networks in the Benchmark data set. 
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Figure 4. Scaled annual cycle of network 4 

 

 

4. VALIDATION USING BENCHMARK DATA SET 

 

The performance of including thresholds into regular Prodige can be seen in Figure 4. On the 

Benchmark data set, the automated algorithm has the same efficiency as the original software. 

 

 

Figure 5. Standard deviation between original homogenous data and data homogenized by various 

methods (y-axis). The x-axis is normalized setting the mean performance of the contributions to 0. (Victor 

Venema) 
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The other software versions are compared with the threshold Prodige in Table 1. The 

detection skill is estimated by means of the Heidke Skill Score comparing the break point 

positions detected by the software with the known positions in the Benchmark data set. The 

correction is estimated by calculating the root mean square error between the homogenous 

and the homogenized data set and dividing by the inhomogenous data. This means a value 

below 1 shows an improvement of the data and a value above 1 indicates a change for the 

worse. 

 
Table 1. Comparison of detection and correction skills of the algorithms described in this paper 

Algorithms HSS
1
 CRMSE

2 
yearly CRMSE monthly 

Prodige automatic: Regular Prodige  

with threshold (Fig 4) 

0.28 0.60 1.03 

Reference station 

all stations 

0.32 0.59 0.89 

Reference station 

least cor. excluded 

0.29 0.64 0.92 

1 
Heidke Skill Score to verify the break point position 

2
 Centered Root Mean Square Error to verify the correction 

 

 

Table 1. shows that both detection methods preform equally well. The main difference can be 

found in correction results. Calculating a monthly correction factor improves the monthly 

values, but leaves the quality of the annual data unchanged. 

 

 

5. FIRST RESULTS 
 

The algorithm Prodige automatic was applied to the daily data set described in section 1. 

Figure 6 shows a summary of the stations with data series, which have been corrected. In 

most of the stations (70 out of 118) no breaks were found, but up to 7 breaks per station have 

been detected, as can be seen in Figure 6a). 
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a) Number of breaks per station (map) b) Number of breaks per station (histogram) 

 Figure 6. Number of breaks per station shown as a) map and b) histogram 

 

 

Figure 7 shows an example for a time series strongly contaminated by inhomogeneities, for 

which station history is available. In such case the detected break points can be easily 

validated by meta-data.  

 

 

Figure 7. Annual precipitation of Zugspitze: Original (red) and  corrected (black) with detected breaks 

(blue) 

 
Table 2. Possible breaks in Zugspitze meta-data 

Year Reason 

1910 Building constructions 

1930 Cutting middle mountain top 

1938 Cutting western mountain top 

1945+ Instrumental change 

 

-- Original data 

─ Homogenized data 
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6. CONCLUSIONS AND OUTLOOK 

 

Especially for data sets with many stations it is important to have automatic algorithms. Both 

approaches, using either thresholds or constructing reference series, show good results on the 

applied Benchmark data set.  

 

Changing from annual to monthly correction does not affect the annual trends if the annual 

cycle is included in the calculation. On the other hand, the monthly trend correction is 

improved. 

 

A validation using real data is still necessary before relying on the automatic methods. This 

includes sensitivity studies on networks to discover the influence of single stations and the 

performance in less correlated networks. The influence on number of breaks and break point 

positions are also of interest, just like the certainty in trend correction. 

 

Additionally the results should be compared with those of other independent algorithms. 

 

 

References 

 
Caussinus, H., and O. Mestre, Detection and correction of artificial shifts in climate series, Journal of the Royal 

Statistical Society. Series C (Applied Statistics), 53(3), 405–425, 2004. 

Mestre, O., Detecting multiple change-points in a gaussian sample using dynamic programming, Proceedings of 

the fourth seminar for homogenization and quality control in climatological databases, Budapast, Hungary, 

WMO, WCDMP-No. 56, 89-92, 2003a  

Mestre, O., Correcting climate series using ANOVA technique, Proceedings of the fourth seminar for homo-

genization and quality control in climatological databases, Budapast, Hungary, WMO, WCDMP-No. 56, 89-

92, 93-96, 2003b 

Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., 

Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., 

Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, 

S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and 

Brandsma, T.: Benchmarking homogenization algorithms for monthly data, Clim. Past, 8, 89-115, 

doi:10.5194/cp-8-89-2012, 2012.  

  



72 

 

PORTUGUESE TEMPERATURE DATASET HOMOGENEITY WITH 

HOME R 

L. Freitas
1
, M. G. Pereira

1,2
, L. Amorim

3,4
, L. Caramelo

1
, M. Mendes

3
, Luís F. Nunes

4
 

1
 Centre for Research and Technology of Agro-Environment and Biological Sciences 

(CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal,  
2
 Instituto Dom Luiz – Universidade de Lisboa, Lisboa, Portugal, gpereira@utad.pt 

3
 Instituto de Meteorologia, IM, I.P., Rua C, Aeroporto de Lisboa, 1749-077 Lisboa, Portugal 

4
 Laboratory for Systems, Instrumentation and Modeling in Science and Technology for 

Space and the Environment, Faculty of Sciences of University of Lisbon, Portugal 

gpereira@utad.pt 

 

 

Abstract 

 
The maximum and minimum temperature Portuguese dataset is managed by the Institute of Meteorology (IM) 

which is national entity responsible to manage the observation network and to compile and archive the observed 

values. This network consists of a set of stations distributed throughout the territory with greater density in the 

urban areas and in sites of higher altitude within the major mountainous regions of the country. From the first 

records (mid 1800s), this network consisted of classical weather stations (CWS), equipped with conventional 

instrumentation such mercury thermometers and/or thermographs. By the end of the 1990s some of these were 

then complemented/replaced by automatic weather stations (AWS), with electronic sensors. The network also 

includes new stations installed at neighboring sites (e.g., airports). This dataset includes time series with more 

than one hundred years of data (monthly data), but the great majority (daily data) starts in 1940.  

 

Besides the replacement of instrumentation (due to failure or damage), some of these stations have been 

relocated (usually from in the meantime urbanized regions to the periphery of the cities/localities) and/or have 

been replaced by automatic weather stations (located or not in the same places). Consequently, the series present 

heterogeneities that have to be identified and amended. On the other hand, the new software for detecting and 

correcting climatological series, developed under the COST Action ES0601, “Advances in homogenization 

methods of climate series: an integrated approach” (HOME), was just released. The HOME's main objective is to 

achieve a general method for homogenizing climate and environmental datasets and the software HOME R 

(HOMER) was developed based on the most adapted statistical procedures for detection and correction of 

varying parameters at different space and time scales. Thus, this work aims to use the HOMER software for 

detection and correction of monthly temperature series in the north region of mainland Portugal. After a 

preliminary analysis for quality control of the dataset, the time series for the same weather station (CWT and 

AWS) were merged. Then, the homogeneity analysis was performed on subsets of the dataset containing 

sufficiently long time series from the same homogeneous climatic regions. Homogenization procedure and 

results of the comparison analysis between the raw corrected datasets will be presented. 

 

 

1. INTRODUCTION 

 

This work results from the cooperation between a team from the Institute of Meteorology, IP 

Portugal (IM) and a group of researchers from the Centre for Research and Technology for 

Agro-Environmental and Biological Sciences (CITAB) at the University of Trás-os-Montes 

and Alto Douro (UTAD), which has been working in quality control and correction of 

environmental databases (e.g., Pereira et al., 2011). Both teams are interested in the study of 

the homogeneity of meteorological databases and have been working together in the 

homogenization of time series of minimum and maximum temperature in the Northern region 

of Portugal. This region is characterized by an irregular topography, a simple river network 

but diverse land use/occupation and a Csb (temperate with dry or temperate summer) and Csa 

(temperate with dry or hot summer) type of climate. 
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The Portuguese observational network started recording the first set of values in the mid-

1800s, with classical weather stations (CWS), equipped with conventional instruments. 

Naturally, during the entire observing period some changes affecting climate data series have 

to be considered, such as the replacement of damaged instruments, the dislocation of the 

weather stations, usually from the urban to rural areas in the periphery of the cities/localities 

and those related to local conditions, as station surroundings significantly change over the 

years. Besides these typical changes, it is also of particular interest the replacement of 

manually operated instruments by electronic systems (automatic weather stations, AWS), with 

electronic sensors, located (or not) in the same places, at most of the sites of IM's network in 

the end of the 90's. At many of these sites, parallel observations with both methods were 

maintained during some years. 

 

The general objective of this work is to contribute to assess the homogeneity of the 

Portuguese maximum and minimum temperature datasets making use of different methods 

and of the COST ACTION ES0601 (Advances in homogenization methods of climate series: 

an integrated approach HOME) main findings specifically the homogenization methods 

comparison analysis. Specific objective of this work are: (i) to use the new HOMER (Home, 

2011) homogenization software which combines different methods for detection and 

correction of monthly temperature series in mainland Portugal; and, (ii) to test HOMER in 

what respects to several aspects, such as stations density, spatial domain, quality of the time 

series. 

 

 

2. DATA 

 

The database of minimum and maximum temperature used in this work corresponds to the 

values of the monthly arithmetic averages calculated from daily values observed at stations 

managed by the IM. This network of stations is well distributed throughout the national 

territory but has a slightly higher in densely populated regions or higher altitudes.  

 

Stations that have been displaced or replaced by automatic stations have different 

identification numbers (ID). Information from these stations was merged to produce just one 

time series, representative of the local stations that originated it. The ID assigned to this time 

series is the same of the most recent one (from the automatic station, for example) since, in 

the future, the data will be recorded in this time series. On the other hand, the information 

from the fusion process is the metadata used in the homogenization analysis. The general 

characteristics of the original and merged series, such as ID, name, elevation, first and last 

date of registration and duration, are presented in Table 1. 
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Table 1 – Information on the minimum and maximum temperature observation station network used in 

this work: identification code (ID1) of each original time series and of the time series obtined after the 

fusion process (ID); stations name; station type; geographic coordinates (latitude and longitude); altitude 

(m); year of the first and last records; and length of the original (DUR1) and merged (DUR2) time series 

(in years) 

 
 

This database contains time series, original or after the merger, with more than one hundred 

years in length such as the case of Coimbra-Geofísico (146 years), Guarda (109 years), 

Montalegre (130 years), Porto - Serra do Pilar (142 years). The network includes many other 

stations with much shorter time series that, for this reason, were not used. 

 

  

ID Initial ID Station name Type Lat (ºN) Lon(ºW) Altitude (m) Start End Dur1 Dur2

705 705 Anadia AWS 40.44 08.44 45 1941 2010 69 69

622 Braga / Merelim AWS 41.58 08.45 65 1998 2010 12

023 Braga / Posto Agrário CWS 41.55 08.40 190 1931 2007 76

575 575 Bragança CWS 41.80 06.74 690 1932 1998 66 66

575 575 Bragança AWS 41.80 06.74 690 1999 2010 11 11

079 079 Caramulo CWS 40.57 08.17 810 1937 1994 57 57

107 107 Coimbra / Bencanta CWS 40.21 08.46 35 1941 2010 69 69

549 549 Coimbra / Geofísico CWS 40.21 08.41 141 1864 2010 146 146

104 104 Dunas de Mira CWS 40.45 08.76 14 1935 2005 70 70

082 Guarda CWS 40.54 07.27 1019 1901 2000 99

683 Guarda AWS 40.53 07.28 1020 2001 2010 9

035 Miranda do Douro CWS 41.50 06.27 693 1942 2001 59

635 Miranda do Douro AWS 41.50 06.27 693 2000 2010 10

032 Mirandela CWS 41.51 07.19 250 1926 2000 74

632 Mirandela AWS 41.51 07.19 250 2001 2010 9

005 Monção / Valinha CWS 42.07 08.38 80 1967 2001 34

605 Monção / Valinha AWS 42.07 08.38 80 1999 2010 11

011 Montalegre CWS 41.82 07.79 1005 1880 2010 130

611 Montalegre AWS 41.82 07.79 1005 2000 2010 10

085 Nelas CWS 40.53 07.86 440 1961 1998 37

685 Nelas AWS 40.52 07.86 425 1999 2010 11

568 Penhas Douradas CWS 40.41 07.56 1380 1932 2003 71

568 Penhas Douradas AWS 40.41 07.56 1380 1998 2010 12

055 Pinhão CWS 41.17 07.55 130 1941 2010 69

655 Pinhão AWS 41.17 07.55 130 2010 2010 0

545 Porto / Pedras Rubras CWS 41.23 08.68 63 1967 1998 31

545 Porto / Pedras Rubras AWS 41.23 08.68 63 1999 2010 11

546 546 Porto / Serra do Pilar CWS 41.14 08.60 93 1863 2005 142 142

052 052 Régua CWS 41.16 07.80 56 1933 2010 77 77

566 Vila Real CWS 41.31 07.74 481 1928 1991 63

567 Vila Real / C. C. CWS 41.27 07.72 561 1992 2002 10

567 Vila Real / C. C. AWS 41.27 07.72 561 1998 2010 12

560 Viseu / C. C. AWS 40.71 07.90 636 1991 2010 19

075 Viseu / Escola Agrária CWS 40.66 07.90 443 1925 2003 78
560

79

109

68

49

78

055

545 43

82

84

43

130

567

85

622
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635

632
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611

685
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Figure 1. Temporal evolution of the number stations without missing data on the basis of minimum 

temperature (left) and maximum (right), located in the northern region of Portugal, for the entire period 

1863-1941 

 

The algorithms to detect and correct the inhomogeneity problems require the existence of a 

sufficient number of time series, as long as possible. The preliminary analysis of the database 

allowed finding a good tradeoff between the density of weather stations in the study area and 

the length of the time series if we consider study period beginning in 1941. Although the 

number of stations with missing values begin to increase from 2000 (Figure 1), it was decided 

to analyze the data from 1941 to 2010 with the aim of analyzing the longest period possible. 

 

 

3. METHODOLOGY 

 

In this work different methods were used: (i) to perform preliminary statistical analysis and 

quality control; and, (ii) to detect and correct problems of homogeneity. In the first case, 

specific software to detect outliers was developed and used along with the Climatol R 

package (Guijarro, 2011) for quality control of the data. The developed software for outlier 

detection in time series is based on the quartile values of the series itself. The outliers were 

identified as the values outside of the range [IQR * k-P25, P75 + k * IQR], where P25 (P75) 

represents the 25
th

 (75
th

) percentile or the first (third) quartile, IQR is interquartile distance, 

defined as P75-P25, and k is a coefficient which usually assume the value 1.5 to identify 

outliers and the value 3.0 to identify extreme values.  
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Figure 2. Correlogram of the series of differences in minimum temperature (left) and maximum (right) 

located in Northern Portugal for the period 1941-2010 

 

The outliers and extreme values identified taking into account the temporal evolution of the 

time series are called single station outliers (SSO) and single station extreme values (SSEV). 

This procedure was performed for each of the series and for each month independently. The 

identified SSO and SSEV were then validated with a comparison analysis based on the time 

series of temperature differences with the neighboring stations. The criterion to select the 

neighboring time series can be based on the distance or on the correlation coefficient between 

the candidate and all other stations. In this work, six of the best correlated nearby stations 

were selected as long as they present a correlation coefficient greater than or equal to 0.6. 

Taking into account the correlogram between the temperature difference time series for both 

the minimum and maximum temperature (Figure 2), these conditions are not too restrictive to 

achieve. The outliers identified by this procedure, will be called neighbor station outliers 

(NSO). The SSO and SSEV were only removed from the databases if were also identified as 

NSO.  

 

Figure 3. Scheme features HOMER, developed and made available within the COST Action ES0601 
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The analysis of homogeneity of the datasets was performed using the HOMER software, 

which was developed and made available within the COST Action ES0601. This application 

was written to be executed in R, which can be defined as an environment or a free language 

for statistical computing and graphics facilities. The HOMER (Figure 3) has two distinct 

groups of features. One dedicated quality control, which mainly uses the Climatol R package 

(Guijarro, 2011), and allows: preliminary statistical analysis of data including correlograms, 

histogram and boxplots monthly; the performance of cluster analysis, and estimate the density 

of the network. A file with the outliers identified in each station can be created and those 

outliers be removed from the original database. The second feature set is dedicated to the 

detection and correction of heterogeneities. HOMER provides three techniques for break 

detection: pairwise, joint and ACMANT. The pairwise technique uses predefined series 

(based on the correlation and distance to the candidate series) but for the sake of visualization 

simplicity, only the detection results with six (better correlated) other series are shown. In this 

technique, three types of plots are produced for each time series: pairwise series; position and 

amplitude of detected breaks; and position and neighbor of detected breaks. Unlike the other 

detection methods, the results of pairwise are not automatically considered by HOMER. 

Instead, the user can visually identify potential breaks and, if desired, add these 

discontinuities to the list of detections made with the other techniques and correct them. The 

joint segmentation model is a detection of break points procedure difficult to implement due 

to high computational execution time. With the development of new algorithms that allow 

their timely implementation, can now be applied to the detection of changes throughout the 

series (Picard et al., 2011). The ACMANT technique was also developed under the COST 

Action HOME (Domonkos et al., 2011) and consists of the bivariate detection of changes to 

the annual and seasonal scale which includes a penalty term. 

 

Several aspects of the functioning of HOMER should be highlighted, such as: 

- Running in automatic mode or with user intervention; 

- Operate in an iterative mode, in the sense that it can perform the detection and correction 

features more than once, that is, while detections were made; 

- Methods can be applied to original (raw) data or to data that have undergone quality 

control (qc); 

- The detection methods can be applied to input data (raw or qc) or to corrected data by 

HOMER or other methods; 

- The detection method ACMANT can only be used after the first correction procedure, 

which is only possible after the first application of the other detection methods  

(pairwise+joint); 

- The correction is always performed on the input data (raw or qc); 

- Run in interactive mode, which means that the user can intervene in the identification and 

elimination of outliers from the database, in the validation of detected breaks with joint 

and ACMANT detection techniques as well as in the addition of breakpoints not detected 

by the joint or ACMANT but suggested by pairwise. 
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Figure 4. Proposed aplication scheme of HOMER. Extracted from HOMER manual, HOME_R.pdf 

 

 

The HOMER also offers the user the ability to produce graphs of the input (raw or qc) and 

homogenized time series. After identifying and correcting the break points, the homogenized 

series are also corrected with regard to missing values.  

 

As referred previously, the HOMER 

can be applied in fully automatically 

mode or with user intervention in the 

validation or addition of breaks. 

Operator intervention can produce 

different solutions, while the 

automatic application of HOMER 

can also be characterized by 

difficulties associated with the data 

itself, particularly its quality (e.g., 

missing values, network density) and 

the temporal location of the 

detections.  

 

The authors of HOMER propose an 

application scheme that includes user 

intervention at various stages of the 

process (Figure 4). In this paper, 

HOMER was applied following this 

scheme, but human intervention was 

limited to a second phase of 

implementation in order to minimize 

the subjectivity of the solutions found. The HOMER was applied fully automatically from the 

first application of the methods of detection pairwise + joint to the second application of the 

method ACMANT on input data. Only at this stage, the hypothesis to include detections 

suggested / made with the initial pairwise methods and pairwise + joint performed on 

corrected data was considered.  

SSO SSEV NSO NO SSO SSEV NSO NO

Anadia 7 0 7 0

Braga 14 0 5 1 1

Braganca 2 0 6 0

Caramulo 5 0 11 0

Coimbra_Bencanta 7 1 1 8 0

Coimbra_Geofisico 9 0 9 0

DunasdeMira 8 1 1 15 1 1

Guarda 6 0 10 0

Miranda do Douro 10 0 6 0

Mirandela 5 1 1 2 1 1

Moncao_Valinha 2 0 4 0

Montalegre 4 0 9 0

Nelas 4 0 3 3 3

Penhas Douradas 8 0 10 3 3

Pinhao_SantaBarbara 16 1 8 8 9 2 1 1

Porto_PedrasRubras 0 0 7 0

Porto_SerradoPilar 5 0 8 0

Regua 4 0 4 0

VilaReal_CC 10 0 5 0

Viseu_CC 5 0 6 3 3

Number of maximum 

temperature outliers

Number of minimum 

temperature outliersWeather station

Table 2. Number of outliers detected on minimum and 

maximum temperature time series (Table 1) analyzing 

each singular station (SSO), comparing with neighbor 

stations (NSO), and total number of outliers (NO) removed 

from the datasets. The number of extreme values detected 

(SSEV) in each time series is also shown 
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4. RESULTS 

 

4.1 Fast quality control 

 

The quality control of data was based on the results of the identification of SSO, SSEV and 

NSO. The results of this analysis for the minimum and maximum temperature are presented 

in Table 2. It should be noted that were only identified 13 (11) outliers in the minimum 

(maximum) temperature dataset. Only the values that simultaneously fulfilled the criterion to 

be classified as SSO and NSO were considered outliers and excluded from the datasets and 

from the analysis of homogeneity.  

 

All the functionalities of quality control available on HOMER were applied and special 

attention was given to the boxplot charts and to the cluster analysis.  

 

In fact, there is a clear and statistically significant distinction between the stations located at 

high altitude in comparison with those located at a lower altitude, in the case of minimum 

temperature, while the major difference in spatial distribution of the maximum temperature 

occurs between stations located in the coast and inland. These differences are more significant 

in winter than in summer (Figure 5). 

 

  

  

Figure 5. Boxplot of the temperature minimum (top) and the maximum temperature (bottom), recorded 

at stations in the Northern region of Portugal, in January and August 
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4.2 Homogeneity analysis with HOMER 

 

Table 3 and Table 4 summarize the results obtained with the application of HOMER for the 

analysis of homogeneity of maximum and minimum temperature after having conducted the 

quality control of databases and following the method of application described in the previous 

section. These tables present, essentially, the first estimates of the location of the breaks 

detected by the various methods in the input data while the columns C represent the phases of 

data correction. It should be noted that the detections are identified by year of occurrence. The 

“Assess month of change” (AMC) procedure allows the identification of the exact month of 

the break which could be in one of the previous or the following years.  

 
 

Table 3. Location of the breaks detected in the time series of maximum temperature recorded in each of 

the stations in the Northern Portugal, with the pairwise, joint and ACMANT detection methods available 

in the HOMER software, performed on input and corrected data. Columns C corresponds to correction 

procedure while ACM (removed) corresponds to the breaks that have to be removed due to difficulties to 

correct the data after the Assessing the Month of Change. Breaks with a star (*) were not validated by the 

user 

 
 

 
  

Station
pairwise

input data

joint

input data
C

ACMANT

input data
C

pairwise+joint

corrected data
C

ACMANT

input data

ACMANT

input data 

(added)

AMC

(removed)

Anadia 49, 79 49 49, 77 2002 2002

Braga 50, 65, 89 48, 81 48, 59, 67 49 50

Braganca 43, 47 71, 93 71, 93

Caramulo 62, 77 78

Coimbra_Bencanta 45, 52 48 53, 90

Coimbra_Geofisico 71, 69 49, 71 49, 71

DunasdeMira 90, 68, 71 68, 72, 90 90

Guarda 73 73 2001 2001

Miranda do Douro 79 79 78

Mirandela 50, 72 50, 93

Moncao_Valinha 92 94

Montalegre 73 95 53, 72, 95 97, 99  52*

Nelas 90 69, 90 93, 98 89 93

Penhas Douradas 89 93   72*

Pinhao 52, 55, 74, 96, 2002 74, 96 55, 74, 96 97, 2003 98 52 97, 98, 2003

Porto_PedrasRubras

Porto_SerradoPilar 73 92 73

Regua 53, 79 93 53

VilaReal_CC 53, 68 53 58, 91

Viseu_CC 80, 52, 93 80, 93 53, 93
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Table 4. As in table 3, but for the minimum temperature 

 
 

It is also important to note that not all years reported in the tables correspond to breaks 

detections. In fact, the values presented in the column "ACMANT input data" with a star (*) 

and information contained in "AMC (removed)" column correspond to detections identified 

but not included in the list of breakpoints. The values of the first case correspond to additional 

breaks detected with the ACMANT on input data, but not validate by the user because it is 

localized in a year when there are no significant differences in relation with neighboring 

series, and for this reason it is considered a false detection and, therefore removed the 

detection list. The breakpoints listed in the “ACM (removed)" column correspond to cases 

where the user has validated the results of the detection methods and assessed the exact month 

of change, but was not possible to correct it and the break was also removed from the 

detection list. Tables 3 and 4 do not include the residual number of breaks detected by the 

pairwise+joint and ACMANT methods on corrected data (6 in maximum temperature and 3 in 

minimum temperature time series) because the vast majority of them coincide with those that 

have been removed from the list of detections as explained previously. 

 

The reasons for not being able to correct the break points identified with the HOMER are 

mainly the existence of missing values before and / or after its location, the position of the 

breakpoints to be very near the beginning or the end of series, and the existence of very close 

points of detection, which is also not recommended. It should also be noted that the detections 

performed on the corrected data results from the fact that they are performed on series with 

less noise and detections were performed on data without missing values. None of these 

conditions corresponds to the characteristics of the original data. In summary, we detected 61 

break points in the minimum temperature time series and 55 in the database of the maximum 

temperature. 

 

 

4.3 HOMER sensitivity tests 

 

Results from the cluster analysis were used to test the influence of the station density and 

spatial domain on the results obtained with HOMER software. Maximum and minimum 

Station
pairwise

input data

joint

input data
C

ACMANT

input data
C

pairwise+joint

corrected data
C

ACMANT

input data

ACMANT

input data 

(added)

AMC

(removed)

Anadia 71 71 70 63, 70, 85 70

Braga 52, 73, 79 92 63, 92 79, 2007 79

Braganca 62, 79, 92 48, 79 46, 62, 79 69 46

Caramulo

Coimbra_Bencanta 69, 95 79 79 50, 94 50, 69

Coimbra_Geofisico 49, 67

DunasdeMira 42, 87, 79 48, 72, 80, 87 72, 80, 84, 87 91, 93 69, 78 93

Guarda 46, 70 46, 70 46, 70

Miranda do Douro 73 73 72

Mirandela 47, 61, 76 76, 86, 97 76

Moncao_Valinha 74 71 99

Montalegre 59, 70, 73 50 50 70, 73 60, 73

Nelas 2008 94, 98

Penhas Douradas 80 50 86 86

Pinhao 01 58, 2003, 2008 59, 2007

Porto_PedrasRubras 68, 74, 90 90 90 95

Porto_SerradoPilar 55, 58, 92

Regua 64, 78, 87 78, 87 78, 87, 2000 64 64

VilaReal_CC 46, 74 44, 74 44, 46, 74

Viseu_CC 60 57, 76, 93 93 79, 89 55 74, 83
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temperature network was divided between stations located in the coastal and interior areas and 

between low and high altitude stations, respectively. In order to avoid the subjectivity of the 

user intervention, HOMER detection and correction functionalities were applied in a full 

automatic mode. Table 4 shows the results obtained with the homogenization analysis 

performed on the entire network (except for the Dunas de Mira weather station) and on 

subsets of maximum temperature time series.  

 

Several aspects should be highlighted, namely: (i) the existence breaks in the exactly and 

similar temporal location but also the detection of breaks on different locations; (ii) the 

difference between the total number of detected breaks (35 analyzed when the entire dataset 

is, 40 when the network is divided). 

 

 

5. DISCUSSION AND CONCLUSIONS 

 

The importance of quality control for the analysis of homogeneity has been reported in the 

vast literature on the subject, is regarded as one of the “ten commandments” for 

homogenization (Olivier and Aguilar, 2011) and is listed in the manual use of the HOMER. 

The existing information on this issue also point towards the analysis of outliers in the 

monthly data to be very limited by the need for a careful analysis of daily data, to identify its 

nature and provide their eventual correction. In fact, the more correct procedure would be to 

develop and implement a system of quality control of daily data before computing the 

monthly averages. It should also be noted that in this study only a few number of outliers 

were identified in the time series of both minimum and maximum temperature. These outliers 

were removed from the database by replacing the original monthly average by the value 

attributed to the lack of data. This is another important aspect, since the original time series 

already have some missing values and the outlier removal could limit the ability to identify 

and correct the database.  

 
Table 5. Maximum temperature breaks detected with automatic use of HOMER over the entire dataset or 

for subsets of coastal and inland weather stations. Similar and coincident and breaks are marked in light 

grey and in grey, respectively, while dissimalr breaks are marked in black. Total number of breaks (SUM) 

and difference between the numbers of breaks in each time series (DIF) are also shown    

 

 

Station Name SUM SUM DIF

Braganca 03/72 1 12/48 06/67 2 1

Caramulo 0 0 0

Guarda 03/48 12/73 2 12/73 1 -1

MirandadoDouro 0 0 0

Mirandela 12/50 12/71 2 12/50 12/57 11/72 3 1

Montalegre 05/96 1 0 -1

Nelas 12/69 12/86 2 0 -2

PenhasDouradas 0 0 0

Pinhao_SantaBarbara 04/53 12/58 11/74 08/78 11/91 12/96 12/98 12/00 8 04/53 12/58 02/78 11/91 12/96 12/98 12/00 7 -1

Regua 12/53 12/57 12/71 12/00 4 12/57 12/72 12/99 3 -1

VilaReal_CC 12/53 10/59 11/82 03/92 4 12/53 10/59 08/78 02/92 4 0

Viseu_CC 04/52 05/80 09/94 03/00 4 12/57 04/81 01/93 09/94 4 0

Anadia 12/49 06/78 2 12/49 1 -1

Braga_Merelim 01/50 12/57 2 10/50 08/56 09/59 10/72 4 2

Coimbra_Bencanta 04/53 1 12/51 04/52 12/75 04/76 4 3

Coimbra_Geofisico 10/49 12/71 2 12/43 06/49 10/52 12/69 12/71 5 3

Moncao_Valinha 0 12/88 04/89 2 2

Porto_PedrasRubras 0 0 0

Porto_SerradoPilar 0 0 0

35 40 5

Breaks detected (entire network) Breaks detected (coastal and inland stations)

SUM SUM
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Other quality control functionalities available in HOMER were used and it is important to 

underline the consistency between the cluster analysis results and the monthly boxplots 

regarding the characterization of the spatial distribution of minimum and maximum 

temperature. It appears that the stations with similar median values are grouped by cluster 

analysis. The statistical significant differences detected in the main clusters of weather 

stations suggest that the analysis of homogeneity of the databases could have been performed 

independently, by separating the stations located high altitude and low altitude, in the case of 

minimum temperature, and the stations on the coast and inland, in the case of maximum 

temperature. However, splitting the database into two subsets of stations could lead to an 

insufficient number of stations to complete the homogenization analysis, especially in the 

case of stations located at high altitude.  

 

The process of homogenization of the maximum temperature proved to be much simpler and 

faster than the minimum temperature. In fact, the number of outliers and break points of the 

minimum temperature is lower than those detected for the maximum temperature. In addition, 

the number of break points in the minimum temperature that could not be fixed with the 

HOMER is higher than for the maximum temperature. Obtained results elucidate some of the 

characteristics of the analysis of homogeneity of databases with HOMER, including: 

 

- Different detection methods produce different results; in fact, the analysis of the results 

presented in Table 3 and Table 4, show, for example, that not all detections made with 

pairwise, joint and ACMANT are coincident; 

- False detections may occur and, in this work, this deficiency is more evident with 

ACMANT than with the joint method; 

- User intervention proved to be important to validate the breaks detected with joint and 

ACMANT methods but also to add the breakpoints identified with the pairwise method; in 

fact, it appears that potential breakpoints (identified with pairwise but not inserted 

automatically by HOMER in the list of detections) were only identified by the joint or by 

ACMANT detection procedures when analyzing the corrected database. 

 

Notwithstanding these limitations, the homogenization analysis of the time series of minimum 

temperature and maximum temperature at stations located in the northern region of Portugal 

with HOMER was successful. Three different methods of detection, recognized by the 

community recognizes as being particularly suitable for the analysis of temperature 

homogeneity were used. These methods were applied successively, first automatically and 

then with user intervention, resulting in corrected databases in the sense that any additional 

break was detected or cannot be corrected with the HOMER due to characteristics of the data.  
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Abstract 

 
In the frame of MEDARE (MEditerranean DAta Rescue) and STRADA (Strategies of Adaptation to climate 

change) projects, Western Italian Alps precipitation and snow depth time series recorded in stations located 

between 960 and 2316 m a.s.l. have been analysed in order to investigate variability and trends over the 1925-

2010 period. The results outline a significant decrease of snow depth over seasonal time scale in the period 1951-

2010.  The snow depth decrease ranges from -0.19 cm/y up to -1.40 cm/y and the contribution to this negative 

trend comes mainly from spring months. The climatic conditions that caused this considerable snow depth 

reduction have been examined. Below 1000 m a.s.l. the snow depth decrease is due to a significant decrease in 

snow precipitation, as a consequence of significant increase of maximum and minimum temperatures. At higher 

elevation the negative trend is more marked for the combination of a stronger increase in minimum temperatures 

and stronger decrease in the number of days with Tmax<0 with respect to low elevation sites. 

 

Keywords: snow depth, winter precipitation and temperatures trends, Alps, climate change. 

 

 

1. INTRODUCTION 

 

The Alps plays a key role in the hydrological cycle, being the source of the river systems that 

supply water to the Po, Rhine, Rhone and Danube basins. A shift in climatic regimes, 

particularly winter precipitation and snow cover duration, would impact heavily on the river 

systems originating in that area, leading to disruptions of the existing socio-economic 

structures of populations living within the mountains and downstream (Beniston, 1997).  

 

Moreover snow represents a resource for hydro-power generation, irrigation, domestic and 

industrial water supply and for tourism based on winter sports (Terzago et al., 2012 in press).  

The investigation on snow precipitation and snow cover variability is fundamental in the 

frame of climate change studies and in developing strategies for the mitigation of climate 

change effects. At local scale the need of information about snow precipitation amount, 

duration and variability is required for a correct socio-economic planning which takes into 

account the changing environment. Literature on snow climatology is rich for the Swiss Alps 

(Laternser et Schneebeli, 2003; Beniston, 1997; Scherrer et al., 2004) and French Alps 

(Durand et al., 2009; Martin et al., 1994). 

 

Concerning Austrian Alps Schöner et al. (2009) used the snow measurement network of the 

Sonnblick region to describe temporal trends of snow-depth and Hantel et al. (2000, 2007) 

studied the sensitivity of Alpine snow cover duration.   

 

Concerning Italian Alps, the information on winter precipitation variability is still scarce 

compared to the Swiss, French and Austrian sides. A general study considering the entire 

Alpine region over the 1971–1992 winters has been conducted by Quadrelli et al. (2001). 

Even though some regional studies have already been produced (Biancotti et al., 1998; 
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Fratianni et al., 2002; Fazzini et Gaddo, 2003), this field can be still considered as 

underexplored due to the difficulty of finding long term and continuous time series. 

 

This work has been conducted in the frame of the MEditerranean climate DAta REscue 

(MEDARE) initiative, born under the auspice of the World Meteorological Organization, with 

the main goal of developing, consolidating and progressing climate data and metadata rescue 

activities across the Greater Mediterranean Region (GMR). Moreover, this study is part of the 

interregional Italy-Switzerland project STR.ADA. (STRategies of ADAptation to climate 

change), draw to evaluate the climatic variability in the North of Piedmont (NW Italy) in 

relation to avalanches risk.  

 

The effort is then addressed to recover historical climatic time series and enhance a unique 

and unexplored daily climatic dataset. The data originally reported over bulletins were 

digitized, quality controlled, checked for homogeneity and then analysed to investigate trends 

and interannual variability of temperatures and snow. 

 

 

2. THE DATA 

 

The historical time series used in this study have been recovered from the paper archives of 

the Ufficio Idrografico del Bacino del Po (Po Basin Hydrographic Office) operational since 

1920's up to 1990 and then merged to the Arpa (Regional Agency for Environmental 

Protection) of Piemonte and Lombardia (Fig. 1). 

 

All the measurements are performed manually by the observers with thermometers, graduated 

snow stakes and snow tablets (Fig. 2). 

 

 

Figure 2. Meteorological station of Lake Serrù 

 

The main parameters used in this study are temperatures maximum and minimum (TM and 

Tn) and the snow depth (HS). In most cases fresh snow precipitation (HN) observations are 

not systematically registered, so, in order to have continuous and comparable data, HN is 

calculated by subtraction of two consecutive HS values. Other derived quantities are the 

number of snowy days SD, defined as the number of days when solid precipitation HN > 0 cm 

and the number of frost and ice days (Tn ≤ 0°C and TM ≤ 0°C respectively). 
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The data finally analysed refer to the ten stations covering the whole Piedmontese Alps and in 

particular the North of Piedmont (Ossola Valley in the frame of STR.ADA. project) and 

ranging between 960 and 2316 m a.s.l. (Tab. 1 and Fig. 3). The longest time series supply 86-

years records (1925-2010) and the shortest ones 50-years records (1961-2010) and they all 

almost continuous. 

 

 

Figure 1. Extract of the paper which were digitalised data and metadata: an example of the Lake Vannino 

station in February 1954 

 

Table 1. Denomination, elevation, position and operational periods of the measurement sites considered in 

this study 

Station Elevation [M A.S.L.] UTM X [M] UTM Y [M] Period 

Camposecco 2316 426645 5101275 1951-2010 

Lago Vannino 2177 451230 5137189 1951-2010 

Lago Toggia 2165 456227 5142763 1932-2010 

Alpi Devero 1634 443114 5129624 1951-2010 

Agaro 1600 422567 5094533 1961-2010 

Lago Castello 1589 345381 4942026 1943-2010 

Ceresole Reale 1573 362763 5032442 1926-2010 

Acceglio Saretto 1540 335855 4927442 1925-2010 

Alpe Cavalli 1500 431707 5104302 1932-2010 

Lago Piastra 960 371372 4898574 1926-2010 



88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Geographical position of the stations selected for this study, located in the Piedmont, NW Italy 

 

 

3. METHODOLOGY 

 

The temperature maximum and minimum, snow depth and fresh snow data performed and 

registered by observers on the bulletins have been digitized together with all the  notes 

regarding the measurements or the instruments anomalies. 

 

A parallel in-depth historical research has been carried out in order to acquire stations 

metadata. Particular attention has been addressed to eventual relocations or changes 

undergone during the stations lifetime, which could reflect in dishomogeneities in the time 

series and relevant changes in the data not related to climatic factors (Aguilar et al., 2003; 

Acquaotta et al., 2009). 

 

All the time series have been quality controlled in order to identify and eventually correct 

anomalous values and errors due to the observers or to the process of digitization. 

Temperatures time series used in this study have been quality checked using the RClimdex 

package (Zhang and Yang, 2004) which highlights unreasonable values. For daily snow depth 

data a procedure for the identification of the data outlying pre-fixed thresholds (the 99th 

percentile calculated on non-zero values) is applied to two derived from HS time series, the 

snow accumulation at and snow depletion dt in order to check the reliability of abrupt changes 

in snow thickness. 

 

Formula for snow accumulation (at) and depletion (dt):  

 
a(t) = HS(t) – HS(t-1) if HS(t) – HS(t-1) > 0 

  0 if HS(t) – HS(t-1) ≤ 0 

d(t) = HS(t) – HS(t+1) if HS(t) – HS(t+1) > 0 

   if HS(t) – HS(t+1) ≤ 0 
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The identification of the inhomogeneities in daily temperatures time series provided essential 

information for the homogenization which has been performed using the SPLIDHOM method 

(Mestre et al., 2011), implemented in the EU COST Action ES0601 “HOME”(Venema et al., 

2012).  

 

Daily values have been aggregated over monthly and seasonal time scales. These data have 

been retained only if at least 80% of the daily values were available (Klein Tank et al., 2002) 

and then a trend analysis has been performed by least square linear fitting (Brunetti et al., 

2001). The significance of the trends has been evaluated with the non parametric Mann-

Kendall test, at 95% confidence level (Sneyers, 1990). 

 

 

4. TRENDS IN SNOW DEPTH AND SNOW PRECIPITATION 

 

The analysis of trends has been conducted at different time scales: over the complete snow 

season November-May (NM) and over winter December-February (DJF) and spring March-

May (MAM) period (Tab. 2). 

 

In Table 2 the snow depth trends over the full period (left) and over the last 60 years (right) 

are compared. If we consider the full records, over the November-May snow season all the 

stations register a negative trend that is statistically significant in two cases: at Acceglio 

Saretto (1540 m),  Southern Piedmont, snow depth decreased by -0.25 cm/y since 1925 and at 

Toggia (2165 m), Northern Piedmont, snow depth decreased by -0.96 cm/y since 1932. The 

other stations, located mainly at middle and low elevation, present a non-significant snow 

depth reduction.  

 
Table 2: Seasonal (NM), winter (DJF) and spring (MAM) trends in snow depth (HS) over the maximum 

period available and over the 1951-2010 common period. The statistically significant trends (95% 

confidence level) are highlighted in bold 

 Elev Max 

Period 

Trend HS 

Max Period [cm/seas] 

Trend HS 

1951-2010 [cm/seas] 

Station [m a.s.l.]  NM DJF MAM NM DJF MAM 

Camposecco 2316 1951-2010 - - - -1.05 -1.12 -1.74 

Lago Vannino 2177 1951-2010 - - - -1.39 -1.82 -1.39 

Toggia 2165 1932-2010 -0.96 -1.22 -0.85 -1.40 -1.74 -1.20 

Alpi Devero 1634 1951-2010 - - - -0.75 -0.78 -1.04 

Agaro 1600 1961-2010 -0.33 -0.17 -0.47 - - - 

Lago Castello 1589 1943-2010 -0.15 -0.20 -0.14 -0.27 -0.33 -0.28 

Ceresole Reale 1573 1926-2010 -0.15 -0.14 -0.17 -0.32 -0.34 -0.33 

Acceglio Saretto 1540 1925-2010 -0.25 -0.26 -0.30 -0.41 -0.40 -0.49 

Alpe Cavalli 1500 1932-2010 -0.30 -0.31 -0.29 -0.58 -0.62 -0.63 

Lago Piastra 960 1926-2010 -0.06 -0.11 -0.01 -0.19 -0.23 -0.18 

 

 

Focusing the analysis over the period 1951-2010, a general decrease of the average seasonal 

snow depth over Piedmontese Alps occurred. This negative trend is statistically significant in 

all the stations. The overall decrease ranges between -0.19 cm/y in the most Southern station 

(Lago Piastra, 960 m a.s.l.) and -1.40 cm/y in the most Northern station (Lago Toggia, 2165 

m a.s.l.). The stations located in Northern Piedmont above 2000 m a.s.l. experienced the 

strongest snow depth reduction, contrary to expectations for high altitude sites. Also 

comparing middle elevation stations at about 1500-1600 m a.s.l. the decrease is strongest in 

Northern Piedmont, so it can be concluded that this area has been the most subject to the snow 
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thickness reduction in the last 60 years. A similar behavior is found over the French side, 

where negative snow depth trends are strongest in the Northern Alps (Durand et al., 2009). 

The analysis over the complete period and over the 1951-2010 subperiod puts in evidence that 

the main contribution to the negative snow depth trend is due to the last decades of the record. 

A strong snow depth decrease since mid 1980s has been documented also over the other 

slopes of Alps, in Switzerland (Laternser and Schneebeli, 2003), France (Durand et al., 2009) 

and Austria (Schoner et al., 2009). 

 

A finer analysis at sub-seasonal scale has been performed to find out in which part of the 

snow season the snow depth reduction is strongest, whether in winter (DJF) or in spring 

(MAM). Below 1600 m winter and spring snow depth reduction are comparable, but the 

trends are significant only in the last part of the snow season. Above 1600 m winter snow 

depth decreased significantly both in winter and in spring, confirming that these stations, 

located mainly in Northern Piedmont are the most subjected to climatic change.  

 

Considering the seasonal accumulated snow precipitation and the seasonal number of days 

with snow precipitation both over the maximum period and over the 1951-2010 sub-period 

(Table 3), in the majority of stations these parameters show negative trends in general not 

statistically significant. However it can be outlined that during the last decades the decrease in 

snowfall amount is largest below 2000 m a.s.l, so the mid and low elevation mountains 

receive less snow precipitation than in the past. According to these results, both over the full 

records and over the 1951-2010 period there is no clear evidence of a significant change in the 

number of days with snow precipitation, so it is unlikely that the observed decrease in snow 

depth is due to a change in the frequency of meteorological perturbations favourable to snow 

precipitation. 

 
Table 3: Trends in seasonal (November-May) accumulated snowfall (HN) and number of snowy days (SD) 

over the maximum period available and over the 1951-2010 common period. The statistically significant 

trends (95% confidence level) are highlighted in bold 

  Max Period Trend Max Period Trend 1951-2010 

Station Elev years HN [cm/y] SD [days/y] HN [cm/y] SD [days/y] 

Camposecco 2316 1951-2010 - - -0.56 -0.04 

Lago Vannino 2177 1951-2010 - - -1.54 -0.10 

Toggia 2165 1932-2010 0.74 0.08 0.59 -0.02 

Alpi Devero 1634 1951-2010 - - -0.37 0.02 

Agaro 1600 1961-2010 -0,51 -0.28 - - 

Lago Castello 1589 1943-2010 -0.51 0.07 -0.85 0.03 

Ceresole Reale 1573 1926-2010 -0.08 -0.08 -0.94 -0.08 

Acceglio Saretto 1540 1925-2010 -0.73 -0.03 -1.31 -0.09 

Alpe Cavalli 1500 1932-2010 -0.52 -0.08 -1.41 -0.16 

Lago Piastra 960 1926-2010 -0.61 -0.02 -1.92 -0.05 

 

 

For each station, the seasonal snow depth standardized anomalies have also been considered. 

All the stations time series have been averaged to get the regional Standardized Anomaly 

Index, which express the anomaly of the studied parameter respect to the mean value over a 

reference 30-year period, in this case 1971-2000. 

 

During the last 25 years almost all seasons were characterized by negative anomalies. The 

SAI calculated on snow precipitation shows the same phases of positive snow depth 

anomalies. The snow precipitation has been below average along the 1940 till the mid 50’s, 

during the 1960’s and from the mid 80’s up to 2008. In the last 25 years only 6 seasons 
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present positive anomalies, all the others had below average snow precipitation. In particular 

it has been registered the longest sequence of seasons with negative anomalies, from 1995 to 

2003 (Fig. 4). 

 

Snow precipitation shows fluctuations of irregular period of about one decade, with relative 

maxima around 1940, 1950, 1960. The most prominent peak is registered in the '70s, when 

average DJF HN was around 300 cm in all the tree stations. The maximum has been followed 

by an absolute minimum around 1990, with snowfall amount reduced by 1/3.   

 

It is outlined a significant decrease of snow depth over seasonal time scale in the period 1951-

2010. In all the sites a strong contribution to this negative trend comes from spring and in the 

Northern Alps the snow depth reduction is significant also in winter months. In the following 

section these findings are related to temperatures in order to explore the connections with the 

snow reduction.  

 

 

Figure 3: Temporal variability of seasonal average snow depth (a) and cumulated snowfall (b) 



92 

 

5. TRENDS IN MAXIMUM AND MINIMUM TEMPERATURES 

 

The investigation on the changes in minimum and maximum temperatures time series shows 

increasing and statistically significant trends both in winter and in spring over the maximum 

period (Tab. 4). In winter the strongest increase in maximum temperatures (0.09 °C/year) is 

found in Acceglio Saretto while for minimum temperatures (0.07°C/year) in Camposecco. In 

spring the highest trend is detected in Lago Toggia: the maximum temperature increased by 

0.05°C/year while the minimum temperature increased by 0.03°C/year. Concerning the 

number of ice and frost days, they decreased even though in the last case the trend is not 

statistically significant. In winter the highest ice day decrease (-0.48 day/year) is registered in 

Acceglio Saretto. 

 

These results can be compared to those referring to the common period 1951-2010 reported as 

well in Table 4. In winter the maximum and minimum temperatures show increasing trends 

but not statistically significant while the trends in climate indices significantly decreased. The 

highest trend is calculated for the number of ice days in Acceglio Saretto (-0.65 days/year). 

 

In spring the maximum and minimum temperature trends are positive and statistically 

significant while the climate indices trends are negative and statistically significant. The 

maximum temperature increase is registered in Acceglio Saretto (0.08°C/year) while the 

highest ice days decrease is identified in Lago Toggia (-0.3 days/year). 

 
Table 4: Winter (DJF) and spring (MAM) trends in maximum (Tmax) and minimum (Tmin) 

temperature, frost day (FD)and ice day (ID) over the maximum period available and over the 1951-2010 

common period. The statistically significant trends (95% confidence level) are highlighted in bold 

Station Elevation [m a.s.l.] Period Seasonal Tmax Tmin FD ID 

Camposecco 2316 1951-2010 
DJF 0.01 0.07 -0.03 -0.15 

MAM -0.06 0.07 -0.27 0.2 

Lago 

Vannino 
2177 1951-2010 

DJF 0.02 0.04 -0.01 -0.11 

MAM 0.04 0.06 -0.25 -0.21 

Lago Toggia 2165 

1932-2010 
DJF 0.02 0.03 -0.0004 -0.22 

MAM 0.05 0.03 -0.13 -0.23 

1951-2010 
DJF 0.02 0.02 9.3^e-4 -0.24 

MAM 0.06 0.03 -0.19 -0.3 

Alpi Devero 1634 1951-2010 
DJF 0.003 -0.01 0.03 -0.12 

MAM -0.05 -0.02 0.28 0.09 

Acceglio 

Saretto 
1549 

1930-2010 
DJF 0.09 0.04 -0.1 -0.48 

MAM 0.03 0.01 -0.11 -0.02 

1951-2010 
DJF 0.1 0.04 -0.1 -0.65 

MAM 0.08 0.06 -0.4 -0.07 

Alpe Cavalli 1500 

1937-2010 
DJF -0.003 0.013 0.04 -0.03 

MAM 0.03 0.01 0.07 -0.02 

1951-2010 
DJF -0.01 0.02 -0.01 0.03 

MAM 0.05 0.03 -0.08 -0.05 

 

 

6. CONCLUSIONS 

 

The present study gives a contribution to the assessment of the temporal and spatial variability 

of the climatic conditions at high elevation sites in Western Italian Alps since 1925. In 

accordance to the MEDARE initiative several historical daily snow depth and temperatures 
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time series have been recovered from the paper archives of several Institutions. The time 

series are representative of all the Western Italian Alps and they allow to explore a range of 

altitude between 900 and 2300 m a.s.l., spanning a 85 year period, from 1925 up to 2010. 

 

The investigation on temporal evolution of snow precipitation shows HN fluctuations with an 

irregular period of about one decade, with relative maxima around 1940, 1950, 1960, and the 

absolute maximum in the '70s. Snow was abundant till the early 80's, then a sequence of poor 

snow winter leads to the absolute minimum of the record in the 1990's. A similar investigation 

has been conducted over the Switzerland (Laternser et Schneebeli, 2003) considering 

individual winters and the results are comparable between the two sides of Alps.  

 

This study outlines a significant decrease of snow depth in all the stations over seasonal 

(November to May) time scale in the period 1951-2010. The main contribution to this 

negative trend comes from spring when the snow depth decrease is comparable to the one 

registered over the complete season. In particular November-May trends range from -0.19 

cm/y in the lowest (960 m a.s.l.) and most Southern station up to -1.40 cm/y at 2177 m a.s.l. 

in the most Northern station. At comparable elevation, around 1500 m a.s.l. the strength of the 

snow depth decrease grows moving Northward. In addition to the strongest snow depth 

reduction in spring, the Northern stations suffer also a significant decrease in winter months, 

so North Piedmontese Alps result the most sensitive to climate change. This important result 

will allow to better investigate the relationship between climatic change and avalanches, the 

main goal of the project interreg STRADA. 

 

The shallower winter and seasonal snow depth can be explained by an increasing in 

temperatures values. The raise in daily temperature anomalies is particularly evident for 

winter months and it ranges from +0.02°C/year to 0.07°C/year for minimum temperatures and 

from 0.003 °C/year to 0.10°C/year for maximum temperatures.  

 

The combination of the higher -especially minimum- temperatures and minor number of frost 

days make the high elevation sites in Northern Piedmont the most vulnerable to snow depth 

reduction to climatic change. Low elevation sites (below 1000 m a.s.l.) are mainly affected by 

scarcer snow precipitation due to higher temperatures and consequent predominance of liquid 

respect to solid precipitation.  

 

In conclusion, a general increase in maximum and minimum temperatures has been found in 

high elevation sites in Piedmontese Alps during the snow season November-May. The 

increase of temperatures together with the decrease in the number of ice and frost days 

enhance the snow melt and may reduce the frequency and amount of snow precipitation at 

low elevation. At high elevations, the main consequence is the faster ablation of the snow 

pack, with consequent snow depth reduction and decrease in snow cover persistence. 
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Abstract 

 
The main aim of the CARPACLIM project is to improve and extend the climate data basis in the Carpathian 

Region for applied regional climatological studies such as a Climate Atlas and drought monitoring. The project 

investigates the temporal and spatial structure of the climate in the Carpathian Mountains and the Carpathian 

basin with unified or at least directly comparable methods. The final outcome of the CARPATCLIM project will 

be high quality climate in-situ time series and 10x10 km grids per country and the whole region, including a 

metadata catalogue documenting the existing homogenised datasets. Quality control and homogenisation 

procedures, together with corresponding metadata of the improved datasets are required to be published without 

limitation. The commonly used homogenisation and DQ software is the MASH (Multiple Analysis of Series for 

Homogenization) has been developed by Tamás Szentimrey at the Hungarian Meteorological Service. 

 

 

1. INTRODUCTION 

 

Joint Research Centre (Ispra) published a tender call supported by the European Parliament in 

June 2010. A consortium of 10 organisations won and started its work by 22 December 2010. 

The project contains three modules with the following tasks: Module 1: Improve the 

availability and accessibility of a homogeneous and spatially representative time series of 

climate data for the Carpathian Region through data rescue, quality control, and data 

homogenisation. Module 2: Ensure Carpathian countries data harmonisation with special 

emphasis on a cross-country harmonisation and production of gridded climatologies per 

country. Module 3: Develop a Climate Atlas as a basis for climate assessment and further 

applied climatological studies as well as for drought monitoring in the Carpathian Region. 

The methodology of the data homogenization in Module 1 is introduced in this paper. 

 

  

Figure 1. The area of interest area between latitudes 50°N and 44°N, and longitudes 17°E and 27°E, 

approximately partly including the territory of Czech Republic, Slovakia, Poland, Ukraine, Romania, 

Serbia, Croatia, Austria and Hungary 
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2. THE METHODOLOGY OF HOMOGENIZATION  

 

The work in progress in Module 1 are the following: - Data rescue and digitisation of 

analogue datasets of climate observations - Quality checking including data gap elimination 

of existing climate time series  - Homogenization of existing climate time series The MASH 

(Multiple Analysis of Series for Homogenization, Szentimrey) procedure was proposed for 

data quality control and data homogenization in the tender service.  For ensuring the largest 

possible station use, each contributor executes the necessary work phases individually but by 

the same methods and software. It assures the national consistency. The international 

harmonization will be guaranteed by near border data exchange. The use of the near border 

data of the neighbouring countries will assure the smooth fitting of individual national maps 

in the region.   

 

The MASHv3.02 software has been already used in several countries in the Carpathian 

Region. At the Hungarian Meteorological Service it was applied for numerous climate 

elements. The chosen homogenization model is depending on the distribution type of the 

element in question. Additive model: mean, maximum and minimum temperature, air 

pressure, means relative humidity, sunshine duration. Multiplicative, cumulative model: 

precipitation, minimum relative humidity, wind speed. The original MASH (Szentimrey, 

1999) procedure was developed for homogenization of monthly series. The time resolution of 

the data specified in the Service Tasks is daily. The present version: MASHv3.02 

(Szentimrey, 2007) has been developed for homogenization of daily series, besides the 

monthly data.  

 

The homogenization, the data quality control and the data completion can be made on 

national level, implemented by the common software MASH. Between the neighbouring 

countries the near border station data series is exchanged in order to cross-border 

harmonization. 

 

 

3. THE MAIN ADVANTAGES OF APPLYING MASH 

 

- In general the daily data homogenization is based on the monthly data homogenization, 

according to the several methods applied in the practice. The benchmark results show that 

the MASH procedure is one of the best monthly homogenization methods examined in 

COST HOME action (Venema et al, 2012) 

- MASH is an automatic procedure, and it is worth considering if the station network is 

dense, or numerous stations have to be examined 

- MASH is able to use the metadata (namely the possible dates of break points) 

automatically. It allows the effective usage of the metadata  

- During the execution of the quality control and homogenization the test results e.g. 

detected errors, degree of inhomogeneity, number of break points, estimated corrections 

and certain verification results are documented in automatically generated tables 

- Information of quality control and homogenization processes performed can be tracked on 

these tables. The summary of them can be added to the homogenized series as the newly 

created metadata.   
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Table I. Set of meteorological variables in daily temporal resolution to be homogenized 

Variable Description Units 

Ta 2 m mean daily air temperature °C 

Tmin Minimum air temperature from 18:00 to 06:00 °C 

Tmax Maximum air temperature from 06:00 to 18:00 °C 

p Accumulated total precipitation from 06:00 to 06:00 mm 

DD 10 m wind direction 0°-360° 

VV 10 m horizontal wind speed m/s 

Sunshine Sunshine duration hours 

cc Cloud cover tenths 

Rglobal Global radiation MJ/m2/day 

RH Relative humidity % 

pvapour Surface vapour pressure hPa 

pair Surface air pressure hPa 

Snow depth Snow depth cm 

 

 

4. THE MAIN STEPS FOR CREATION OF THE STATION DATA SERIES  

 

I. Compilation of the raw station data series. 

1. Selection of the stations (with the spherical coordinates: φ, λ), determination of the 

time period.  

2. Collecting the daily station data series (missing data are allowed) and the metadata per 

countries. Exchange of the near border station data series and the metadata between 

the neighbouring countries. 

 

II. Homogenization, quality control, data completion for the station data series by MASH on 

national level, with using the near border data. 

1. Derivation of monthly station data series from the daily station data series collected in 

I.2.  Homogenization, quality control, data completion of the monthly station data 

series. Metadata (probable dates of break points) can be used automatically.   

2. Daily station data series (I.2): homogenization, quality control, data completion. This 

procedure is based on the results of II.1. 

3. Exchange of the near border homogenized data for cross-border harmonization and for 

gridding (Module 2: modelling, interpolation).  

4. Evaluation of the results of the homogenization and quality control was carried out. 

Controlling of the cross-border harmonization of the data series. The cross-border 

harmonization will be continued after modelling procedure of gridding in Module 2. 
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Figure 2. The scheme of the data exchange around the Hungarian border  

 

 

 

5. THE PROCEDURE FOR HOMOGENIZATION OF DAILY SERIES BY 

MASHV3.03 

 

The main steps of homogenization of daily series with quality control and missing data 

completion are as follows. 

 

1. Monthly series from daily series. 

2. MASH homogenization procedure for monthly series, estimation of monthly 

inhomogeneities. Meta data can be used automatically 

3. On the basis of estimated monthly inhomogeneities, smooth estimation for daily 

inhomogeneities. 

4. Automatic correction of daily series.  

5. Automatic quality control (QC) for homogenized daily data. 

6. Automatic missing daily data completion. 

7. Monthly series from homogenized, controlled, completed daily data. 

8. Test of homogeneity for the new monthly series by MASH. 

 

During the procedure the results as detected break points and errors, estimated corrections and 

certain verification test results are documented in automatically generated tables. 

 

Two types of the result files of the MASH procedure can be differentiated:. 

 

A: The first type is output files of the homogenized, controlled and completed series, 

inhomogeneity series, detected breaks and detected errors. 
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B: The second type is output files of the test results, verification tables in order to evaluate the 

homogenization procedure: 

- In the verification tables: test statistics before and after homogenization, statistics to 

characterize the modification of series, the spatial representativity of the station network, 

evaluation of metadata etc. 

- Tables of quality control results for daily data. 

 

 

6. CONCLUSION 

 

Applying the MASH procedure allows to perform the data homogenization quality control 

and data completion for the Carpathian region for numerous stations and elements during the 

tender service as it is quasi automatic, mathematically well established procedure. The 

members of consortium execute the homogenization individually with the common software 

MASH Daily, it assures the national consistency. The international harmonization will be 

guaranteed by near border data exchange. The automatic test results organized in tables allow 

measuring the inhomogeneities of the meteorological observations in the region before and 

the data quality improvement after the homogenization. The participants of the project started 

to use the software with the manual (Szentimrey, 2011) furthermore they have already tested 

it on their data series and the preliminary results have been obtained and delivered to the JRC. 

The CARPATCLIM project assists the availability of a set of homogeneous and spatially 

representative time series of climate data for the Carpathian Region through data rescue, 

quality control, and data homogenisation. 
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Abstract 

 
Climate study is not possible without well proved and qualitative empirical data - time series of meteorological 

parameters. Term “well proved” means that time series are homogeneous; they do not have a lot of missed 

values (gaps) and outliers. So, the first step of any climatological investigations should be checking of time 

series quality that can be done by using of MASH software (Dr. Tamás Szentimrey) 

 

The goal of this study is to present first results of using of MASH software in Ukrainian Hydrometeorological 

Institute. The MASH procedure was used to perform quality control and to homogenize very long monthly air 

temperature time series collected in Ukraine during time period of 1881 – 2007. We used observations data of 38 

Ukrainian stations that were uniformly distributed on the territory of Ukraine. An average distance between 

stations was about 100 km. There was some amount of gaps in practically all stations except Kyiv, where there 

were no missed values. Percentage of gaps was different for different stations with limit of 20 %. 

 

Territory of Ukraine was divided into 6 regions with approximately similar climatological conditions within. 

Homogenization procedure was performed for each region separately. 

 

We used an algorithm of MASH running according to new version of MASH Manual (2011) and performed two 

running of MASH for each region. The first run was performed without metadata while during the second one 

metadata have been used. Comparison of the obtained results shows that MASH software defines break points 

very well. 

In general, revealed inhomogeneties in the monthly air temperature time series collected on the Ukrainian 

territory were less than 1
0
C, which means that they are rather good and may be used for climatological studies. 

 

 

1. INTRODUCTION 

 

Well proved and qualitative empirical data, i.e. time series of meteorological parameters, is an 

essential background for climate study. Term “well proved” means that time series are 

homogeneous; without missed values (gaps) and outliers. Therefore, the first step of any 

climatological studies should be the checking of time series quality and homogenization. Such 

an assessment of time series can be performed by using MASH software (Szentimrey, 1999; 

Szentimrey, 2011). According to the results of benchmarking conducted in the framework of 

COST Action HOME (Venema et al, 2012) this homogenization procedure is one of the best. 

 

The objective of this study is to discuss results of using MASH software in Ukrainian 

Hydrometeorological Institute (UHMI). The MASH procedure was used to perform quality 

control and to homogenize very long monthly air temperature time series collected in Ukraine 

during time period of 1900 – 2007. This period was chosen because some work regarding 

study of regional climate change during the last century is planned in UHMI for the nearest 

future. 
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2. DESCRIPTION OF THE TEMPERATURE DATASETS EMPLOYED 

 

At the present Ukrainian meteorological network includes 188 meteorological 

(climatological) stations and about 370 hydrological posts where precipitations are measured 

(Vyshnevsky and Tokar, 1998). 114 Ukrainian stations are presented at the WMO catalog of 

observation stations. 

 

There are 2 stages of meteorological data quality control (QC) in Ukraine. At the first stage 

information passes internal observation station quality control procedure. During the second 

one, meteorological information goes under QC performed in Meteorological Division of 

Central Geophysical Observatory of the Ministry of Emergencies of Ukraine. Finally, 

meteorological information is published in special tables which guaranties that it is rather 

qualitative and reliable. But we should mention that checking of homogeneity of temperature 

data using up-to-date homogenization procedures has not been performed. 

 

Observations data of 33 climatological stations uniformly located on the territory of Ukraine 

were used for this study. Stations with minimal amount of missed values, maximal period of 

observations and providing more reliable data have been selected. Schematic map displaying 

spatial distribution of the employed climatological stations is presented in Fig. 1. An average 

minimal distance between stations was about 100 km. The altitude of the stations ranges from 

22 to 327 m. 

 

Figure 1. Ukrainian climatological stations considered in the study 

 

Practically all stations except station Kyiv were characterized with certain amount of gaps in 

data series. Percentage of gaps was different for different stations with limit of 20 %. More 

detailed information regarding employed stations is presented in Table 1. 

 

Historical description of Ukrainian stations is published in the special issues (Climatological 

handbook USSR, 1968; Climatological handbook, 2011) which served as sources of possible 

break points (metadata). Most of Ukrainian stations were relocated several times; some of 

them were relocated at very long distance (about 20 km). Besides, measuring methodology 

for temperature was changed at all Ukrainian climatological stations. In 1966 four time 

observations were replaced with eight times observations. We should note that some 
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correction for monthly air temperature for a period with four time observations was proposed 

and implemented in published tables. 

 

 

3. USED MASH ALGORITHM 

 

MASH software was applied according to the algorithm shared among participants of 

CARPATCLIM project by T. Szentimrey. The algorithm is quasi automatic. However, in our 

case using of the algorithm was not enough because test statistics (TS) still remained quite 

high. Therefore, according to the MASH Manual some additional steps were used. 

 

Firstly, we used MASH procedure without metadata in order to assess the efficiency of this 

software in break points detection. After this we run the MASH software second time with 

collected metadata. According to the recommendations of Venema et al (2012) the results of 

last running could be considered as most accurate. Namely these results will be taken for 

further climatological studies. 

 
Table 1. Detailed information concerning Ukrainian climatologocal stations involved 

MASH 

index 
Name ID 

Coordinates Height, 

m 

Beginning of 

observations 

Gaps (1900-

2007), % Lat Long 

1 Semenivka 33049 52,2 32,6 160 1927 17 

2 Chernigiv 33135 51,4 31,3 139 1883 13 

3 Ovruch 33213 51,3 28,8 168 1894 12 

4 Konotop 33261 51,2 33,2 144 1923? 11 

5 Sumy 33275 50,9 34,8 180 1896 5 

6 Lutsk 33187 50,7 25,5 233 not known exact. 20 

7 Kyiv 33345 50,4 30,5 166 1812 0 

8 Zhytomyr 33325 50,2 28,7 219 1886 2 

9 Shepetivka 33317 50,2 27,1 277 not known exact. 15 

10 Lubny 33377 50,0 33,0 156 1892 2 

11 Kharkiv 34300 49,9 36,3 154 1892 2 

12 Lviv 33393 49,8 24,1 319 not known exact. 5 

13 Myronivka 33466 49,7 31,0 151 1913 20 

14 Zolotonosha 33484 49,7 32,0 94 1895 2 

15 Ternopil 33415 49,6 25,6 327 not known exact. 18 

16 Poltava 33506 49,6 34,6 160 1886 2 

17 Vinnytsya 33562 49,2 28,6 296 1908 14 

18 Ivano-Frankivsk 33526 48,9 24,7 270 1887 19 

19 Uman 33587 48,8 30,2 214 1885 4 

20 Uzhhorod 33631 48,6 22,3 115 1872 18 

21 Dnipropetrovsk 34504 48,6 35,1 141 1839 4 

22 Lugansk 34523 48,6 39,3 59 1836 0 

23 Kirovograd 33711 48,5 32,2 170 1874 2 

24 Synelnykove 34505 48,4 35,5 147 1915 19 

25 Chernivtsi 33658 48,3 25,9 242 not known exact. 10 

26 Donetsk 34519 48,1 37,8 224 1926 16 

27 Zaporizhzhya 34601 47,9 35,3 59 not known exact. 13 

28 Mykolaiv 33846 47,0 32,0 49 1801? 7 

29 Rozdilna 33834 46,9 30,1 146 1924 16 

30 Kherson 33902 46,6 32,6 47 1825 8 

31 Odesa 33835 46,4 30,8 42 1839 1 

32 Simferopol 33946 45,0 34,0 180 1821 5 

33 Feodosiya 33976 45,0 35,4 22 1870 1 
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4. RESULTS OF HOMOGENIZATION 

 

Firstly, we would like to present homogenization results without taking into account 

metadata. We should mention that the degree of inhomogeneity of considered time series was 

rather high. The average value of TS before homogenization exceeds the critical value several 

times even in average (see second part of Table 2). 

 
Table 2. The homogeneity test results for year series (MASHVERO.RES) 

VERIFICATION OF HOMOGENIZATION (Ordered Statistics) 

I. TEST STATISTICS FOR SERIES INHOMOGENEITY 

Null hypothesis: the examined series are homogeneous. 

Critical value (significance level 0.05):  21.73 
 

1. Test Statistics After Homogenization 

Series Index TSA Series Index TSA Series Index TSA 

3352 18 60.31 3313 2 59.37 3304 1 51.93 

3346 13 51.61 3332 8 50.16 3321 3 46.15 

3384 28 42.82 3390 30 42.07 3331 9 41.70 

3365 25 40.97 3451 26 40.40 3394 32 40.20 

3460 27 38.47 3397 33 33.61 3450 21 32.59 

3371 23 32.10 3450 24 31.83 3356 17 31.55 

3452 22 30.79 3339 12 28.16 3383 29 28.02 

3318 6 27.44 3430 11 26.52 3337 10 22.27 

3383 31 20.67 3348 14 20.36 3327 5 20.20 

3326 4 20.19 3358 19 19.13 3350 16 18.83 

3334 7 17.76 3363 20 17.68 3341 15 15.61 

AVERAGE:       33.38 
 

2. Test Statistics Before Homogenization 

Series Index TSB Series Index TSB Series Index TSB 

3450 21 950.98 3339 12 833.91 3390 30 568.78 

3334 7 566.12 3331 9 547.36 3341 15 542.41 

3356 17 436.55 3451 26 408.96 3352 18 368.82 

3384 28 352.27 3304 1 344.21 3371 23 315.76 

3318 6 307.45 3313 2 246.17 3326 4 239.66 

3332 8 167.23 3450 24 157.60 3460 27 155.51 

3346 13 139.68 3452 22 134.71 3363 20 125.57 

3337 10 124.84 3327 5 118.17 3394 32 115.87 

3430 11 109.51 3383 31 100.09 3358 19 96.64 

3350 16 95.73 3397 33 94.70 3321 3 87.32 

3365 25 66.97 3348 14 66.80 3383 29 61.24 

AVERAGE:        274.17 

                        
Table 3. Homogenization results for all series together (the Verisum file) 

Index  1:     3451 26 87.74         3450 21 43.00         3460 27 35.54 

Index  2:     3451 26 81.66         3460 27 70.59         3326 4       63.08 

Index  3:     3352 18 51.67         3450 24 47.05         3313 2 46.60 

Index  4:     3430 11 89.84         3332 8 79.71         3451 26 71.40 

Index  5:     3390 30 77.56         3450 24 57.54         3384 28 56.41 

Index  6:     3348 14 90.41         3341 15 90.35         3352 18 58.16 

Index  7:     3451 26 84.97         3326 4 71.96         3394 32 63.87 

Index  8:     3352 18 55.15         3358 19 46.47         3450 24 38.58 

Index  9:     3341 15 72.06         3352 18 56.61         3371 23 48.79 

Index 10:    3451 26      79.60         3346 13 68.12         3383 29 59.22 

Index 11:    3450 24 52.91         3460 27 52.02         3326 4 48.88 

Index 12:    3384 28      97.18         3390 30 89.75         3352 18 66.28 
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Index 13:    3451 26 68.75         3326 4 58.01         3337 10   56.46 

Index 14:    3450 24 67.06         3450   21 52.66         3327 5   51.89 

Index 15:    3326   4 79.79         3321 3 69.41         3358 19 60.90 

Index 16:    3346 13      45.58         3358     19 44.70         3326 4   43.33 

Index 17:    3326 4 70.59         3327 5 61.93         3397 33 50.13 

 

The test statistics proximate the critical value after homogenization. This is also shown in the 

Table 2 where the results of verification procedure for year series are presented. Table 2 is a 

part of the file MASHVERO.RES. 

 

The MASH procedure reduced substantially the test statistics also in the case of monthly 

series. Homogenization results for all series together are presented in Table 3. This is the file 

“Verisum”. 

 

In order to assess the efficiency of MASH software in break points detection we have 

compared MASH results with available metadata. However, it should be mentioned that our 

metadata is not complete. We have mainly taken into account only changing in location of 

stations. Approximately 30% of detected break points can be explained by our metadata (Fig. 

2). We believe that this is very good result. We have to emphasize that MASH works very 

well in break detection especially when changes were considerable: all big changes were 

detected by MASH. 

 

Figure 2. Number of break points detected by MASH and explained by metadata 

 

Taking into account mentioned above we can conclude that executing of MASH with 

available metadata will not change the homogenization results considerably. Our calculations 

approve this conclusion. 

 

 

5. EFECT OF REVEALED INHOMOGENEITY ON LINEAR TRENDS IN 

CONSIDERED TEMPERATURE TIME SERIES 

 

Climate change and variability, especially on regional scale, is very important and interesting 

climatilogical issue. It is also important to know if revealed inhomogeneities influence 

conclusion regarding regional climate change. As it was mentioned above this will be an 

object of a special study in UHMI. Here we present some tentative results. 
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Calculation of time series linear trends coefficients is the simplest way to assess climate 

changes. According to previous findings of Ukrainian climatologist (Climate of Ukraine, 

2003) the most considerable changes of regional climate were observed for the end of winter 

and beginning of spring. Based on those conclusions, the time series for March and calculated 

coefficients of linear trends (k) for original (with filled gaps) and homogenized series have 

been selected for our study. Results are presented in Table 4. Besides coefficients of linear 

trends the values of the determination coefficients are presented (r
2
) in the table as well. 

 
Table 4. Linear trends of original and homogenized time series for March 

MASH 

index 
Station 

Original data Homogenized data 

k, 
o
C/100 year r

2
, % k, 

o
C/100 year r

2
, % 

1 Semenivka 2.17 5.4 2.22 5.7 

2 Chernigiv 2.01 4.9 2.04 5.0 

3 Ovruch 1.49 3.0 1.65 3.6 

4 Konotop 2.19 5.5 2.05 4.9 

5 Sumy 2.01 4.7 1.92 4.4 

6 Lutsk 0.63 0.5 0.94 1.1 

7 Kyiv 2.16 5.9 2.04 5.3 

8 Zhytomyr 1.18 1.8 1.33 2.3 

9 Shepetivka 0.94 1.2 0.95 1.2 

10 Lubny 2.07 5.3 2.05 5.2 

11 Kharkiv 2.12 5.4 2.21 5.9 

12 Lviv -0.07 0.0 0.88 1.1 

13 Myronivka 1.73 3.6 1.68 3.4 

14 Zolotonosha 1.81 3.9 1.79 3.8 

15 Ternopil 0.37 0.2 0.80 0.8 

16 Poltava 2.25 6.0 2.32 6.4 

17 Vinnytsya 0.97 1.2 1.13 1.6 

18 Ivano-Frankivsk 0.41 0.2 0.51 0.4 

19 Uman 1.74 3.7 1.57 3.1 

20 Uzhhorod 0.44 0.3 0.54 0.5 

21 Dnipropetrovsk 1.01 1.4 1.82 4.6 

22 Lugansk 2.13 5.7 1.48 2.8 

23 Kirovograd 0.67 0.6 1.51 3.1 

24 Synelnykove 1.78 4.1 1.69 3.8 

25 Chernivtsi 0.59 0.5 0.63 0.5 

26 Donetsk 1.89 5.0 1.54 3.4 

27 Zaporizhzhya 1.53 3.5 1.48 3.3 

28 Mykolaiv 0.79 1.1 1.26 2.7 

29 Rozdilna 1.06 1.8 1.19 2.2 

30 Kherson 0.46 0.4 1.07 2.1 

31 Odesa 1.43 4.2 1.43 2.1 

32 Simferopol 0.04 0.0 0.04 0.0 

33 Feodosiya 0.40 0.4 0.71 1.1 

 

Coefficient of linear trend changes its sign at only one station (Lviv). At other stations 

changes are not so considerable. There are two stations where linear trends are the same for 

both original and homogenized time series (Odesa and Simferopol). This is in agreement with 

homogenization results: exactly at these stations break points were not detected. 
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6. CONCLUSION 

 

According to our results the absolute values of the revealed inhomogeneties in the employed 

monthly air temperature time series were not so large (less than 1
0
C). In spite of this, the 

degree of inhomogeneity before implementing MASH procedure was rather high. Using 

MASH allowed decreasing values of TS considerably. 

 

The homogenized time series can be used for further climate studies. Besides, homogenized 

time series can serve as reference time series for homogenization and quality controlling of 

another Ukrainian stations data. 

 

Our results also confirm the importance of data homogenization in climate change studies. 

Inhomogeneity can cause to not only quantitative difference in estimated climate change 

parameters but also in qualitative conclusions (like in case of the station Lviv). 
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benchmark cycle for the International Surface Temperature Initiative 

Williams, C. N., Menne, M., Thorne, P. (US): Structural Uncertainty in the USHCN 

temperature records 

Guijarro, J. A. (ES): Influence of network density on homogenization performance 

Mestre, O. (FR): A focus on correction of the early part of the networks in the benchmark 

experiment 

Domonkos, P., Venema, V. (ES, DE): Efficiencies of homogenisation methods: our present 

knowledge and its limitation 

 

18:00 Welcome party 
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Tuesday, 25 October  

 

9:00-12:00 

Methods and software for monthly data: 

 

Grimvall, A., Sirisack, S., and Sysoev, O. (SE): Segmentation of Multiple Time Series 

Using a Tree Algorithm and Dynamic Programming 

Robin, S. (FR): Some statistical tools for change-points detection 

Lindau, R., Venema, V. (DE): What is the correct number of breaks points hidden in a 

climate record? 

Domonkos, P. (ES): ACMANT: Why is it efficient? 

Mestre, O., Domonkos, P., Picard, F., Robin, S., Lebarbier, E., Prohom, M., Aguilar, E. 

(FR,ES): Combining pairwise/joint/ACMANT detections in HOMER software 

 

Lunch break 

 

 

13:30-17:00 

Methods for daily data: 

 

Stepanek, P. (CZ): Comparison of correction methods for inhomogeneities in daily time 

series  

Szentimrey, T. (HU): Theoretical questions of daily data homogenization 

Auer, I., Chimani, B. (AT): AT-HOM – a homogenized daily temperature and precipitation 

data set for climate impact studies in Austria 

Stepanek, P., Zahradnicek, P., Mozny, M. (CZ): Experiences with quality control and 

homogenization of daily data of various meteorological elements in the Czech Republic 

Petrović, P. (RS): Application Of The ReDistribution Method On Custom Data Subsets 

 
 

Wednesday, 26 October 

 

9:00-12:00 

Homogenisation and quality control of climate data series: 

 

Rustemeier, E., Kapala, K., Venema, V., Simmer, C. (DE): Detection and correction of 

breakpoints in longterm German precipitation series 

Dubuisson, B., Gibelin, A. L., Jourdain, S., Colombon, N. (FR): Homogenization of 

monthly Temperature and Precipitation over France  

Andresen, L. (NO): Homogenization of monthly long-term temperature series of mainland 

Norway 

Vízi, Zs., Saunders, M. (UK): Quality control and detection of inhomogeneities in wind 

observation data in the Met office Integrated Data Archive System (MIDAS) 

Bertrand, C. (BE): Data quality control within the RMI climatological network. 

 

Lunch break 

 

 

13:30-18:00 

Management Committee of COST HOME 
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19:00 Seminar banquet 

 

 

Thursday, 27 October  

 

9:00-12:30 

Homogenisation and quality control of climate data series: 

 

Nordli, Ø. (NO): The homogenisation of the Oslo temperature series 1837-2011 

Freitas, L., Pereira, M. G., Amorim, L.,  Caramelo,  L.,  Mendes,  M., Nunes, L. F. (PT): 

Portuguese temperature dataset homogeneity with HOME R 

Guijarro, J. A. (ES): Experiences of homogenization of different climatological variables 

with the Climatol package 

Fratianni, S. (IT): Considerations on snow data 

Mikulová, K., Breja, S., Šťastný, P., Bochníček, O., Kajaba, P. (SK): Risks dealing with 

data preparation of sunshine duration for homogenization process 

Lakatos, M., Szentimrey, T., Bihari, Z., Szalai, S. (HU): Data homogenization in 

CarpatClim project  

 

Lunch break 

 

 

14:00-17:00 

Possibility for presentations of various software 
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