Observing System Experiments Using the NCEP Global Data Assimilation System

James Jung
Cooperative Institute for Meteorological Satellite Studies

Lars Peter Riishojgaard
University of Maryland, Baltimore County
Overview

• Background / Experiments
• Anomaly Correlations
• Tropical Wind Vector RMSE
• Time Series / Poor Forecast Performance
• Forecast Impact
• Hurricane Statistics
• Summary
Background

- NCEP Operational GDAS/GFS May 2011 version
- T574L64 operational resolution
- Two Seasons
 - Aug-Sept 2010
 - Dec 2010-Jan 2011
- Cycled experiments
- 7 Day forecast at 00Z
- Control late analysis (GDAS) used for verification
- Not NCEP operations computer
Experiments

No Satellite Data

- AMSU-A
- MHS
- AMVs
- GPS-RO
- Hyperspectral
- GOES Sounder
- HIRS
- WindSat

No Conventional Data

- Rawinsondes
- Aircraft
- Ship / Buoy
- Profilers
- VAD winds
Experiments

• No AMSU-A
 – N-15, N-18, N-19, MetOp-A, Aqua

• No MHS
 – N-18, N-19, MetOp-A

• No Atmospheric Motion Vectors (AMV)
 – MTSAT, Meteosat-7, Meteosat-9, GOES-E, GOES-W, MODIS

• No GPS-RO (11)
 – CNOFS, COSMIC, GRACE, MetOp-A, SACC, TerraSAR-X
Experiments

- No Rawinsondes (T, Q, UV)
 - Rawinsondes, Dropsondes, PIBALs
- No Aircraft data
 - AIREP, ASDAR, AIRCAR
- No Hyperspectral IR data
 - AIRS, IASI
Anomaly Correlations
500 hPa Anomaly Correlations
15 Aug – 30 Sep 2010

No Satellite / No Conventional Data

Northern Hemisphere

Southern Hemisphere

AC differences outside of outline bars are significant at the 95% confidence level.
500 hPa Anomaly Correlations
15 Aug – 30 Sep 2010
No AMSU-A / No MHS

Northern Hemisphere

Southern Hemisphere

5th WMO Observing Systems Impact Workshop
500 hPa Anomaly Correlations
15 Aug – 30 Sep 2010

No GPS-RO / No AMV

Northern Hemisphere

Southern Hemisphere

5th WMO Observing Systems Impact Workshop
500 hPa Anomaly Correlations
15 Aug – 30 Sep 2010

No Rawinsondes / No Aircraft

Northern Hemisphere

Southern Hemisphere

AC differences outside of outline bars are significant at the 95% confidence level

Forecast Hour

5th WMO Observing Systems Impact Workshop
500 hPa Anomaly Correlations
15 Aug – 30 Sep 2010

No Hyperspectral Infrared

Northern Hemisphere

Southern Hemisphere

5th WMO Observing Systems Impact Workshop
500 hPa, Day 5, Instrument Average AC scores

500 hPa Day 5 AC Scores
15 Aug - 30 Sep 2010

500 hPa Day 5 AC Scores
15 Dec 2010- 31 Jan 2011

5th WMO Observing Systems Impact Workshop
1000 hPa, Day 5, Instrument Average AC scores

1000 hPa Day 5 AC Scores
15 Aug - 30 Sep 2010

1000 hPa Day 5 AC Scores
15 Dec 2010 - 31 Jan 2011

5th WMO Observing Systems Impact Workshop
Anomaly Correlation Conclusions

500 hPa Summary

• No satellite and no conventional data experiments are similar to previous studies.
 – No Satellite has greatest impact, especially in Southern Hemisphere.

• Single instrument scores are much smaller than entire suite denial.

• Few instruments have statistically significant impact at day 5.
 – Satellite, Conventional, Rawinsonde, Aircraft (Aug-NH)
 – Satellite, Conventional, Rawinsonde, GPS-RO (Aug-SH)
 – Satellite, Conventional, Rawinsonde, AMSU-A (Dec-NH)
 – Satellite, Conventional, AMSU-A, GPS-RO (Dec-SH)
Anomaly Correlation Conclusions

1000 hPa Summary

• In general, similar (but less) impact as at 500 hPa
• Single instrument scores are much smaller than entire suite denial.
• Less sensors have statistically significant impact at day 5.
 – Satellite, Conventional, Rawinsonde (Aug-NH)
 – Satellite, Conventional (Aug-SH)
 – Satellite, Conventional, Rawinsonde (Dec-NH)
 – Satellite, Conventional, Rawinsonde, AMSU-A (Dec-SH)
Tropical Vector Wind RMSE
No Satellite / No Conventional Data
15 Aug – 30 Sep 2010

RED => RMS (exp) > RMS(control)
GREEN => RMS(exp) < RMS(control)
No AMSU-A / No MHS
15 Aug - 30 Sep 2010

RED => RMS (exp) > RMS(control)
GREEN => RMS(exp) < RMS(control)
No GPS-RO / No AMV
15 Aug - 30 Sep 2010

RED => RMS (exp) > RMS(control)
GREEN => RMS(exp) < RMS(control)
No Rawinsondes / No Aircraft
15 Aug - 30 Sep 2010

RED \Rightarrow RMS (exp) $>$ RMS (control)
GREEN \Rightarrow RMS (exp) $<$ RMS (control)
No Hyperspectral Infrared
15 Aug - 30 Sep 2010

RED => RMS (exp) > RMS (control)

GREEN => RMS (exp) < RMS (control)
Tropical Wind Statistics
Conclusions

• RED implies data has positive effect on tropical winds
• All data types have a positive impact on Vector Wind Statistics in the Tropics
Time Series

Poor Forecast Performance
500 hPa Day 5 North America Time Series

Anomaly Correl: HGT P500 G2/PNA 00Z, Day 5

Verification Date

16 AUG 21 AUG 26 AUG 1 SEP 6 SEP 11 SEP 16 SEP 21 SEP 26 SEP 2010

CNTRL 0.663 47
NOGAPS 0.883 47
NOCONV 0.516 47

Anomaly Correl: HGT P500 G2/PNA 00Z, Day 5

Verification Date

16 AUG 21 AUG 26 AUG 1 SEP 6 SEP 11 SEP 16 SEP 21 SEP 26 SEP 2010

CNTRL 0.553 47
NOGAPS 0.883 47
NOAMV 0.544 47

5th WMO Observing Systems Impact Workshop
Conclusions

• Poor forecast performance observed on 3 September 2010 for both day 3 and day 5 forecast over North America.

• No clear data type is responsible for this case.

• A missing data type can lead to poor forecast performance.
Forecast Impact Time Series
Forecast Impact Time Series

- Measures the difference of the RMSE growth in short term forecasts
- Uses late analysis with all data (best estimate of atmosphere)
- Area weighted
- Normalized by control
- August – September 2010
Forecast Impact

\[FI(x, y) = 100 \times \left\{ \sqrt{\frac{1}{N} \sum_{i=1}^{N} (C_i - A_i)^2} - \sqrt{\frac{1}{N} \sum_{i=1}^{N} (E_i - A_i)^2} \right\} / \sqrt{\frac{1}{N} \sum_{i=1}^{N} (C_i - A_i)^2} \]

- Control “C” uses all data
- Experiment “E” denied specific data
- Control Analysis “A” the late analysis (GDAS) with all the data
Forecast Impact Time Series
Temperature / Geopotential Heights
Forecast Impact Time Series
Relative Humidity / U Component

No Satellite No Conventional No Satellite No Conventional

5th WMO Observing Systems Impact Workshop
Component Forecast Impact Time Series Temperature

- No AMSU
- No Rawinsonde
- No MHS
- No Hyperspectral

5th WMO Observing Systems Impact Workshop
Component Forecast Impact Time Series
U Component

No AMSU
No Rawinsonde
No MHS
No Hyperspectral

5th WMO Observing Systems Impact Workshop
Component Forecast Impact Time Series
Geopotential Heights

No AMSU No Rawinsonde No MHS No Hyperspectral

5th WMO Observing Systems Impact Workshop
Conclusions

• Satellite data dominates short term RMS statistics.
• Again, single instruments are not equal to entire suite.
• Upper tropospheric relative humidity signal is not from a specific humidity instrument.
 – Probably from AMSU via improved temperature
Hurricane Statistics
Hurricane Statistics

Atlantic Basin Hurricane Track Mean Errors

* NOT SIGNIFICANT

5th WMO Observing Systems Impact Workshop
Hurricane Statistics

Atlantic Basin Hurricane Track Mean Errors

* NOT SIGNIFICANT

5th WMO Observing Systems Impact Workshop
Conclusions

• Only one hurricane season.
 – Atlantic Basin
• Statistics do not pass significance tests.
• Both satellite and conventional data increase track errors.
• Rawinsondes (dropsondes) and AMSU-A seem to have the greatest individual impact on track forecasts.
Summary

- NCEP operations version of the GDAS (May 2011) at the operational resolution (T574L64) was used
- Experiments conducted on a different computing system
- No Satellite / No Conventional data statistics similar to previous studies.
- Impact from individual sensors is less than expected
 - less sensors make significant changes to the anomaly correlation scores.
- Most instrument types have a positive impact on tropical winds
 - Conventional data, AMSU, AMV, GPS-RO, Aircraft, Rawinsondes
Summary

• No clear data type is responsible for the poor forecast performance on 3 Sept 2010.
• A missing data type can lead to poor forecast performance.
• Forecast Impact also shows individual instruments have less impact than expected.
• Upper tropospheric relative humidity forecast impact seems to be from more than just moisture sensors.
• Rawinsondes and AMSU-A have the greatest individual impact on Atlantic Basin Hurricane statistics (qualitative).
Precipitation Statistics
Precipitation Statistics

CONUS Precip Skill Scores, f12-f36, 15aug2010-30sep2010

Differences outside of the hollow bars are 95% significant based on 10000 Monte Carlo Tests

5th WMO Observing Systems Impact Workshop
Precipitation Statistics

CONUS Precip Skill Scores, f12-f36, 15Aug2010-30Sep2010

Differences outside of the hollow bars are 95% significant based on 10000 Monte Carlo Tests

5th WMO Observing Systems Impact Workshop
Precipitation Statistics

CONUS Precip Skill Scores, 15aug2010–30sep2010

Equitable Threat Score

BLAS Score

Difference w.r.t. prontrol

Threshold (mm/24hr)

Differences outside of the hollow bars are 95% significant based on 10000 Monte Carlo Tests

5th WMO Observing Systems Impact Workshop
Precipitation Statistics

CONUS Precip Skill Scores, f12–f36, 15aug2010–30sep2010

Equitable Threat Score

proctrl

prnhyr

Difference w.r.t. proctrl

Threshold (mm/24hr)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.2

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

Differences outside of the hollow bars are 95% significant based on 10000 Monte Carlo Tests

5th WMO Observing Systems Impact Workshop
Precipitation Statistics

CONUS Precip Skill Scores, f12-f36, 15aug2010-30sep2010

Equitable Threat Score

BLAS Score

Threshold (mm/24hr)

Difference w.r.t. prontrl

Differences outside of the hollow bars are 95% significant based on 10000 Monte Carlo Tests

5th WMO Observing Systems Impact Workshop
Summary

• Precipitation threat scores are for CONUS only.
• Conventional data has greatest impact on short term precipitation threat scores.
 – Rawinsondes & Aircraft
• AMVs and MHS also show short term impacts
• No consistent signal in longer term scores or the Dec-Jan season.