Future Aeronautical Meteorology Research & Development

Matthias Steiner
National Center for Atmospheric Research (NCAR)
Boulder, Colorado, USA
msteiner@ucar.edu

WMO Aeronautical Meteorology Scientific Conference
6 – 10 November 2017 in Toulouse, France
The only constant is change.

~ Heraclitus (approx. 500 BC)
A Changing World

Technology
- Communication
- Computing
- Automation
- Aircraft
- Sensors

Stakeholders
- ICAO, WMO, CAAs
 - Airport & Airlines
 - ATC & ATM
 - GA, UAS
 - Space
 - Defense
 - ANSPs

Weather & Climate

Procedures
- Terminal
- En route
- Oceanic

Discussing weather in a broader context

- Observations
- Process understanding
- Modeling & prediction
• **Air traffic growth**
 - Asia/Pacific & Middle East

 ![World map showing passenger volume growth](image)

 - Approximate passenger volume per month, Q1 2017
 - North America: 3.0% (3,430,000)
 - South America: -1.0% (1,240,000)
 - Asia Pacific: 5.4% (3,470,000)
 - Middle East: 4.8% (3,470,000)
 - Europe: 6.1% (2,170,000)

 Travel between Asia Pacific and the Middle East surged 13.4% CAGR over the last two years.

• **New entrants**
 - business jets
 - unmanned systems
 - space travel
 - supersonic flight

 ![Business jets and spacecraft images](image)

 New weather requirements?

• **Stakeholders**
 - ICAO, WMO, CAAs
 - Airport & Airlines
 - ATC & ATM
• **International coordination**
 - ICAO/WMO roadmap
 - major programs lead way

- **Stakeholders**
 - ICAO, WMO, CAAs
 - Airport & Airlines
 - ATC & ATM

- **Weather roadmap**

© 2017 University Corporation for Atmospheric Research
- Communication
- Computing
- Automation
- Aircraft
- Sensors

• Computing
 - exponential growth in computing
 - cloud computing
 - data analytics

• Aircraft
 - propulsion, fuel
 - avionics, automation
 - communication

High weather sensitivity
• Communication
• Computing
• Automation
• Aircraft
• Sensors

Technology

• **Infrastructure**
 - GPS-based position
 - position communication
 - connectivity & interoperability

Security concerns
- **Efficiency & capacity**
 - performance-based navigation
 - trajectory-based operations
 - time-based management
 - collaborative decision making
 - greener skies

Metrics

<table>
<thead>
<tr>
<th>KPA</th>
<th>EFFICIENCY</th>
<th>CAPACITY</th>
<th>PREDICTABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOCUS AREASI</td>
<td>ADDITIONAL FLIGHT TIME & DISTANCE</td>
<td>ADDITIONAL FUEL BURNS</td>
<td></td>
</tr>
<tr>
<td>CORE KPIs</td>
<td>KPI02 Taxi-Out Additional Time</td>
<td>KPI09 Airport Peak Arrival Capacity</td>
<td>KPI03 Departure punctuality</td>
</tr>
<tr>
<td></td>
<td>KPI13 Taxi-In Additional Time</td>
<td>KPI10 Airport Peak Arrival Throughput</td>
<td>KPI14 Arrival Punctuality</td>
</tr>
<tr>
<td>ADDITIONAL KPIs</td>
<td>KPI04 Filed Flight Plan en-Route Extension</td>
<td>KPI16 Additional fuel burn</td>
<td>KPI07 ATFM delay</td>
</tr>
<tr>
<td></td>
<td>KPI05 Actual en-Route Extension</td>
<td>KPI11 Air Traffic Capacity Utilization</td>
<td>KPI18 ATFM slot adherence</td>
</tr>
<tr>
<td></td>
<td>KPI08 Additional time in terminal airspace</td>
<td>KPI12 Airport/ Terminal ATFM Delay</td>
<td></td>
</tr>
</tbody>
</table>

- **Terminal**
- **En route**
- **Oceanic**
- **Traffic management initiatives**
 - range of tools available
 - airspace flow program
 - ground delay program
 - ground stop
 - miles/minutes in trail
 - traffic management advisor
 - plus many others

- **Wake separation**
 - on ground & in air

- Terminal
- En route
- Oceanic

Effective use of weather is key
- Observations
 - new satellites (GOES-16, Himawari-8, JPSS, etc.)
 - radar & lightning
 - in situ (basic meteo, turbulence, etc.)
 - field experiments (BAIRS, HAIC/HIWC, ICICLE, etc.)

- Prediction
 - increasing resolution yields improved atmospheric processes representation
 - ensembles for capturing prediction uncertainty & probabilistic forecasting

Essential for process understanding & model initiation/validation/verification
- **Safety**
 - range of weather hazards
 - including volcanic ash & space weather

- **Climate change**
 - weather impacts are changing

Weather & Climate

- Process understanding
- Modeling & prediction

Need to appreciate weather/climate impacts on aviation operations

Need to appreciate aviation operations on environment (e.g., noise & emissions)
Emerging Concepts & Tools

- **Weather integration & impact translation**
 - weather translation to operational constraints
 - understanding constraints in operational context
 - mitigation of avoidable impacts (efficiency & safety)
 - applies to planning & execution, & all phases of flight

Level 0
- No Weather Integration
 - Displayed independently
 - Cognitive interpretation
 - Manual use & application

Level 1
- Weather “On-the-Glass”
 - Displayed with traffic
 - Cognitive interpretation
 - Manual use and application

Level 2
- Weather Translation
 - Weather Translation Outputs
 - NAS Constraints
 - Threshold Events

Level 3
- Impact Identification
 - Impact Identification Outputs
 - NAS Impacts
 - NAS State Changes

Level 4
- Impact Resolution
 - Impact Resolution Outputs
 - Tactical TFM Solutions
 - Strategic TFM Solutions

MITRE

- **Monitor**
 - Data

- **Identify Constraint**
 - Hypothetical Capacity

- **Analyze Impact**
 - Demand vs. Capacity

- **Plan**
 - Criteria

- **Act**
 - Consider Alternatives
 - Prioritize
 - Reassess

© 2017 University Corporation for Atmospheric Research
• **Probabilistic capacity estimation**
 - translation of weather ensemble into probabilistic capacity
 - applicable to airspace & runways

(a) User Perspective Missing from Analysis

Weather hazard,

Forecast #1 Forecast #2 Forecast #3

averaging weather ensembles

How many air lanes may fit?

Most likely 2 air lanes will fit!

(b) User Perspective Central to Analysis

2 air lanes 2 air lanes 2 air lanes

ensembling user-relevant information

(a) Probabilistic 9-h Impact Forecast

<table>
<thead>
<tr>
<th>Runway Capacity</th>
<th>Departures</th>
<th>Arrivals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Likelihood of 30% Reduction in E-W Direction

0 20 40 60 80 100 %
Weather avoidance routing
- trajectory-based operations
- considering multiple hazards
 > route varies depending on hazards & intensity considered

Avoiding moderate or greater convection (red) but not turbulence (orange)

Time: 13:00 UTC
TO IAF: 15:08 UTC

18 November 2015 flight from Houston, TX to Norfolk, VA
• **Weather in cockpit**
 - enhancing shared situational awareness
 > dispatch & pilot
 - electronic flight bag with real-time weather
 > multiple weather hazards
 > horizontal & vertical depiction
• **Smart decision support**
 - what-if scenarios for traffic management
 > record of past weather, air traffic, & other data
 > ability to search for “similar events” in past
 > ability to replay situation using different TMIIs
 > ability to simulate conditions into future
 - useful for training & real-time decision making
• **Crowdsourcing**
 - interactive, real-time information about traffic situation
• **World is changing**
 - speed of change varies by sector (computing >> aircraft design >> climate/weather)
 - effective change management requires foresight, planning & lead time

• **Future of air traffic management**
 - significant growth in air traffic (Asia/Pacific, Middle East) & emerging new airspace users
 - focus on trajectory-based operations, flexible routing, & denser spacing
 - enablers include satellite-based navigation, connectivity, shared data, etc.

• **Future of weather prediction**
 - increasing resolution to better resolve atmospheric processes
 - use of ensembles to capture forecast uncertainty & probabilistic predictions
 - improved & more observations (both in situ & remote), enhanced algorithms
 - characterization of weather impacts (translation) along flight path, for flows & domains

• **Future of decision support**
 - providing enhanced & shared situational awareness (data sharing is key)
 - enabling consistent flight/flow planning & execution through increased predictability
 - examination of what-if scenarios in real time yielding smarter decisions
 > supported by large amounts of data & data analytics
 - building trust in technology (training)
Thank you

Acknowledgements
- various sources for photos & graphics, including internet, publications, Basic Commerce and Industries (BCI), Metron Aviation, MIT Lincoln Laboratory, The Mitre Corporation
- enlightening discussions with very many people
- graphics support from Cindy Halley-Gotway & Arnaud Dumont

6 to 10 November 2017, Météo-France, Toulouse