An algorithm for automated cloud pattern recognition and mass eruption rate estimation from umbrella cloud or downwind plume observed via satellite imagery

WMO 7 International Workshop on Volcanic Ash, Anchorage, AK

S. POUGET1†, E. JANSONS2, R. RUSTOWICZ1, M.I. BURSIK1, A. TUPPER2 AND P. W. WEBLEY3

1. DEPT. OF GEOLOGY, UNIVERSITY AT BUFFALO, SUNY, BUFFALO. NY. 14260. USA
2. AUSTRALIAN BUREAU OF METEOROLOGY, MELBOURNE, AUSTRALIA
3. GEOPHYSICAL INSTITUTE, UNIVERSITY OF ALASKA FAIRBANKS, FAIRBANKS. ALASKA. 99775 USA

†deceased
Introduction

- Volcanic ash transport and dispersion models require mass eruption rate (MER)

- Can satellite imagery be used to estimate MER from cloud growth?

- Could this be done in an automated fashion?

Visible AVHRR images from Okmok eruption on 12 July 2008
• **Umbrella Cloud**: radially driven intrusion (gravity current) into the atmosphere at neutral buoyancy level

• **Downwind Plume**: result of downstream spreading by wind and crosswind spreading as gravity current
Case Studies

- Manam October 24th 2004 (Papua New Guinea)
- Manam January 27th 2005 (Papua New Guinea)
- Okmok July 12th 2008 (Alaska, USA)
- Kelut February 12th 2014 (Java, Indonesia)

Visible satellite imagery of Manam on October 24th at 04:25 UTC
Pattern recognition – what do we need?

APES - Automated Probabilistic Eruption Surveillance

- IR satellite images in NetCDF format with lat, long and radiance
- Four consecutive images
- Atmospheric temperature and wind profile
- Yields cloud area, centroid, etc.

Umbrella cloud from Manam, 27 January 2005, detected by APES algorithm
Pattern recognition – how does it work?

1. **Convective analysis**

 Estimate the convective available potential energy, the number of cloud levels and their respective heights.

2. **Image analysis**

 Outline clouds and assign into families of clouds of same type.

3. **Eruption detection**

 Identification of the group made up of eruptive clouds by weak correlation with previous cloud families.

Umbrella cloud from Okmok July 12, 2008 on visible imagery (left) & outlined by algorithm on IR imagery (right)
From area to MER for umbrella cloud

For continuous release

- Assuming the umbrella cloud initially intrudes as inertial gravity current
- Quasisteady growth rate between two times, the MER of the plume at time \(i \) is
 \[
 Q_{i,Hb} = \frac{2\bar{\rho}}{3\sqrt{\pi\lambda N}} \frac{A_{i}^{3/2} - A_{i-1}^{3/2}}{(t_i^2 - t_{i-1}^2)}
 \]

- \(A \sim t^{4/3} \)

At eruption cessation

- In this case, no more material is added
- Estimate of mass of the cloud at time \(i \) is expressed as:
 \[
 m_i = \frac{\sqrt{\pi\bar{\rho}}}{3\lambda N} \frac{A_{i}^{3/2} - A_{i-1}^{3/2}}{(t_i - t_{i-1})}
 \]

- \(A \sim t^{2/3} \)
The plume is assumed to spread downwind at the windspeed, \(u \), and in the crosswind direction as a gravity current.

The MER can be expressed at time \(i \) as:

\[
Q_i = \frac{9 \bar{\rho}}{8 \chi ' N u} \left(\frac{A_i^2 - A_{i-1}^2}{t_i^3 - t_{i-1}^3} \right)
\]

\(A \sim t^{3/2} \)
From plume MER to particle MER using radiosonde or NWP

\[Q_{i,p} = Q_{i,Hb} \left(1 - \frac{\rho_g}{\bar{\rho}} \right) \]

Where \(\bar{\rho} \) is atmospheric density at the mid-height of the intrusion and \(\rho_g \) is gas density in the cloud estimated from:

\[\rho_g = \frac{P_{\bar{H}}}{(R_d \Gamma_b)} \]

In which the pressure is given from NWP or radiosonde, and temperature is brightness temperature.

Note: we assume most of the gas in the cloud by volume is air and that the solid particle portion of the cloud is opaque.
Estimation of MER of the plume (gas and particles) and of the particles at the level of neutral buoyancy for the eruption of Manam, January 27th 2005

<table>
<thead>
<tr>
<th>Time (UTC)</th>
<th>Eruption duration (s)</th>
<th>Area detected (m²)</th>
<th>MER_{Hb} – plume (kg/s)</th>
<th>MER_{Hb} – particles (kg/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13h25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14h25</td>
<td>1.50E+03</td>
<td>6.45E+09</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15h25</td>
<td>5.10E+03</td>
<td>3.57E+10</td>
<td>9.46E+10</td>
<td>4.32E+06</td>
</tr>
<tr>
<td>16h25</td>
<td>8.70E+03</td>
<td>5.29E+10</td>
<td>3.92E+10</td>
<td>1.79E+06</td>
</tr>
<tr>
<td>17h25</td>
<td>1.23E+04</td>
<td>6.64E+10</td>
<td>2.37E+10</td>
<td>1.08E+06</td>
</tr>
</tbody>
</table>
From area to MER of particles using numerical simulations – umbrella cloud

Note: for the curves, 10^x is the MER at the source, and $\sim 2.5 \times 10^x$ is the MER injected into the umbrella cloud.
From area to MER of particles using numerical simulations – downwind plume

Manam October 24 2004

Windspeed of 5.4 m/s
Conclusions

- Pattern recognition can be used to identify volcanic plumes on a satellite image.

- Combined with a gravity current model using the area of the plume, the MER and plume shape can be automatically estimated as a function of time on satellite imagery.

- Continuing work: implement in an operational mode.
Publications
