Automated in-situ Turbulence reports from Airbus aircraft

Axel PIROTH

6 to 10 November 2017, Météo-France, Toulouse
Atmospheric Turbulence is leading to situations somewhat uncomfortable...
An intensive investigation has been performed by METRON company on Airbus request.

INJURIES
According to the US Department of Transportation, costs associated to one injured person range from $11,000 (minor) to $333,000 (serious):
- Medical expenses
- Potential Legal Costs
- Lost employee time

For US Part 121 Flights (airliners) in the 2000s:
- 700 injured flight attendants per year
- 125 injured passengers per year

\[\text{33M$ / year} \]

In addition, in-flight injuries can lead to IFTB:
- 100k$ / event

ROUTE - FL CHANGE
- Deviation from optimal F-PLN inducing extra fuel & delays
- Schedule disruption due to limited reporting

For US Part 121 Flights (airliners) in the 2000s:
- 57.4M$ / year

\[\Rightarrow \text{large additional cost for operators} \]

Ongoing Costs
- Cabin Refurbishing / Loads Inspection / Structural Repairs
- Beyond Parts & Labor:
 - Lost revenue
 - Pax re-accommodation
 - Schedule disruption

Worldwide cost of turbulence = 2 billion $ per year

Airbus A319/A320/A321 Cost Comparison

<table>
<thead>
<tr>
<th>A/C</th>
<th>1 Hour delay</th>
<th>Cancellation + 1 Day AoG</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>3800 US$</td>
<td>22850 US$</td>
</tr>
<tr>
<td>LR</td>
<td>13500 US$</td>
<td>78140 US$</td>
</tr>
<tr>
<td>DD</td>
<td>31900 US$</td>
<td>187600 US$</td>
</tr>
</tbody>
</table>
Cost of Turbulence for Air Carriers – … and in future

Situation will be strongly worsened in the coming years due to both:

- Air Traffic growth, which will be more than doubled in 20 years

- Climatic Changes, which will rise frequency and severity of turbulence

Cost impact could go as high as 250% in 20 years

$+170\%$ of chance to be hit by a turbulence for A/C going from Europe to North America by next decades (*)

Turbulence potentially up to 40% stronger

* Research by Dr Williams (university of Reading)
Observed EDR – The mitigation

Need of more, live and accurate information

Solution: Real-time Turbulence Automatic Reporting

Turbulence knowledge uncertainty

Already installed on board of 40 A/C over Europe.

Live massive information leading to:

- Safer flights with less injuries
- Airline Operations optimisation (delays, fuel consumption, diversions avoidance ...)
- Improvement of forecast
- Enhance climate change understanding
A/C as a weather sensor

Met offices & Weather providers

Services/Applications providers

Operational Control Center

A/C Airlines solutions

Improved weather forecasts

Airports solutions

Flight planning tool

Flight tracking tool

Ground modules

A/C Airlines solutions

Weather information or alerts

Flight crew

Dispatcher
Observed EDR applications (1/4)

- On-ground Segment
Observed EDR applications (2/4)

- On-ground/on Board Segments

Alerting msg
Observed EDR applications (3/4)

- Statistical information
Observed EDR applications (4/4)

- Statistical information

Maximum EDR Mean
All reports
2017-01-23 16H
2017-10-09 09H
More to come!

- Windshear, Icing conditions
- Humidity
- UV
- Connected Weather Radar
- Pollution sensors, others...
Thank you
Backup Slides
Metric Selection & Computation

- **Turbulence Assessment.** Several options (as identified by WMO/AMDA, 2003)
 - Aircraft Vertical Acceleration \((N_z) \) \{ A/C response characterization (A/C dependant) \}
 - Derived Equivalent Vertical Gust \((DEVG) \) \{ Atmosphere characterization (no A/C dependant) \}
 - Eddy Dissipation Rate \((EDR) \): **ICAO guideline**

- **EDR computation.** Several algorithms (developed by NCAR, DLR ...)
 - DLR algorithm benefits: → no use of A/C response
 - → use of all wind components

Geodetic Wind
\[
\begin{align*}
V^\text{cs}_w &= V^\text{cs}_k - V^\text{cs}_a \\
\text{Wind Speed} &\quad \text{Ground Speed} &\quad \text{Air Speed}
\end{align*}
\]

Turbulence Metric
- Fluctuations of each geodetic wind component along A/C flight path
- Time average (moving window)

EDR - Eddy Dissipation Rate

- Turbulence reports downlink frequency:
 - Every 10’ for Routine reports
 - Every 1’ for Special reports

Routine Reports
(non-significant turbulence)

Special Reports
(significant turbulence)