Development of an ensemble-based volcanic ash dispersion model for operations at Darwin VAAC

Rodney Potts
Bureau of Meteorology Australia

[C Lucas, R Dare, M Manickam, A Wain, M Zidikheri, A Bear-Crozier]
Outline

• VAAC operations
• Research
• Dispersion Ensemble Prediction System (DEPS)
• Conclusions and future work
Volcanic Ash Advisory Centres (VAAC) area of responsibility
Warnings for volcanic ash

- Advice or detection of an eruption
- Interpretation of satellite data
- Dispersion model guidance
- Generation of VAA and VAG for ash cloud 0h, +6h, +12h and +18h.
Research objectives

Improve information systems and guidance for operations in the Darwin VAAC

Eyjafjallajökull eruption 2010 → guidance on spatial variation in ash concentration and uncertainties

• Satellite remote sensing
 ▪ Discriminate ash from water/ice, plume height, mass load – Pavolonis et al (2015a,b)
 ▪ Himawari-8 – operational since 2015 – improved spatial, temporal and spectral resolution

• Dispersion modelling
 ▪ HYSPLIT coupled with ACCESS NWP model
 ▪ Source term parameters – line / umbrella source, MER, mass distribution, uncertainties
 ▪ Improved microphysics – particle size distribution, particle fall speed, wet deposition
 ▪ NWP ensemble models – quantify uncertainties
 ▪ Integrated use of satellite data to calibrate forecasts - inverse modelling
Kelut, 1930Z, 13 Feb 2014, MTSAT-2

(+3 hr after eruption. Ash probability (%) and mass load (g/m²))
Kelut, 0130Z, 14 Feb 2014, MTSAT-2

(+9 hr after eruption. Ash probability (%) and mass load (g/m2))
Specification of “Himawari-8/9” Imager (AHI)

<table>
<thead>
<tr>
<th>Band</th>
<th>Central Wavelength [μm]</th>
<th>Spatial Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.43 - 0.48</td>
<td>1Km</td>
</tr>
<tr>
<td>2</td>
<td>0.50 - 0.52</td>
<td>1Km</td>
</tr>
<tr>
<td>3</td>
<td>0.63 - 0.66</td>
<td>0.5Km</td>
</tr>
<tr>
<td>4</td>
<td>0.85 - 0.87</td>
<td>1Km</td>
</tr>
<tr>
<td>5</td>
<td>1.60 - 1.62</td>
<td>2Km</td>
</tr>
<tr>
<td>6</td>
<td>2.25 - 2.27</td>
<td>2Km</td>
</tr>
<tr>
<td>7</td>
<td>3.74 - 3.96</td>
<td>2Km</td>
</tr>
<tr>
<td>8</td>
<td>6.06 - 6.43</td>
<td>2Km</td>
</tr>
<tr>
<td>9</td>
<td>6.89 - 7.01</td>
<td>2Km</td>
</tr>
<tr>
<td>10</td>
<td>7.26 - 7.43</td>
<td>2Km</td>
</tr>
<tr>
<td>11</td>
<td>8.44 - 8.76</td>
<td>2Km</td>
</tr>
<tr>
<td>12</td>
<td>9.54 - 9.72</td>
<td>2Km</td>
</tr>
<tr>
<td>13</td>
<td>10.3 - 10.6</td>
<td>2Km</td>
</tr>
<tr>
<td>14</td>
<td>11.1 - 11.3</td>
<td>2Km</td>
</tr>
<tr>
<td>15</td>
<td>12.2 - 12.5</td>
<td>2Km</td>
</tr>
<tr>
<td>16</td>
<td>13.2 - 13.4</td>
<td>2Km</td>
</tr>
</tbody>
</table>

Water Vapour

- **SO₂**
- **O₃**
- **Atmospheric Windows**
- **CO₂**

- **MSG/EUMETSAT**

Full Color Disk Image

- Every 10 minutes

as of MTSAT-1R/2

<table>
<thead>
<tr>
<th>Band</th>
<th>Central Wavelength [μm]</th>
<th>Spatial Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.55 – 0.90</td>
<td>1Km</td>
</tr>
<tr>
<td>2</td>
<td>3.50 – 4.00</td>
<td>4Km</td>
</tr>
<tr>
<td>3</td>
<td>6.50 – 7.00</td>
<td>4Km</td>
</tr>
<tr>
<td>4</td>
<td>10.3 – 11.3</td>
<td>4Km</td>
</tr>
<tr>
<td>5</td>
<td>11.5 – 12.5</td>
<td>4Km</td>
</tr>
</tbody>
</table>
Research objectives

Improve the information systems and guidance for operations in the Darwin VAAC

Eyjafjallajökull eruption 2010 → guidance on spatial variation in ash concentration and uncertainties

• Satellite remote sensing
 ▪ Discriminate ash from water/ice, plume height, mass load – Pavolonis et al (2015a,b)
 ▪ Himawari-8 – operational since 2015 – improved spatial, temporal and spectral resolution

• Dispersion modelling
 ▪ HYSPLIT coupled with ACCESS NWP model
 ▪ Source term parameters – MER, line / umbrella source (mass distribution), uncertainties
 ▪ Microphysics – particle size distribution, particle fall speed, wet deposition, aggregation
 ▪ NWP ensemble models – quantify uncertainties
 ▪ Integrated use of satellite data to calibrate forecasts - inverse modelling
Wet deposition

- Removal of ash by rainfall
- Heavy seasonal rainfall in Darwin VAAC area
- Significant seasonal impact on ash mass loading
- There has been relatively little investigation on this
Vertical emission rate - Kelut

VOLCAT mass load at 13/2330

Optimal vertical mass emission rates

Simulation at 13/2330 UTC with uniform source

Simulation at 13/2330 UTC with optimal source
Dispersion Ensemble Prediction System (DEPS)

• Web application that runs HYSPLIT coupled with Bureau's 24 member ACCESS-GE ensemble system [+ deterministic models ACC-G, ACC-R, NOAA-GFS]
• Defined eruption source parameters
 – height
 – line / umbrella source
 – duration of eruption
 – MER and fine ash fraction (Mastin etal 2009, Webster etal 2012)
 – wet vs dry sedimentation
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Line</th>
<th>Umbrella</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Source a</td>
</tr>
<tr>
<td>Eruption time</td>
<td>1600Z, 13 Feb 2014</td>
<td></td>
</tr>
<tr>
<td>HYSPLIT model initialization time</td>
<td>1600Z, 13 Feb 2014</td>
<td></td>
</tr>
<tr>
<td>Eruption duration</td>
<td>4 hours</td>
<td></td>
</tr>
<tr>
<td>Wet deposition</td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Line</th>
<th>Umbrella</th>
<th>Source a</th>
<th>Source b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base (km)</td>
<td>1.731</td>
<td>1.731</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Top (km)</td>
<td>26</td>
<td>26</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Diameter (km)</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Fine ash fraction</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>MER (kg/s)</td>
<td>7.88×10^6</td>
<td>3.94×10^6</td>
<td>3.94×10^6</td>
<td></td>
</tr>
</tbody>
</table>
Kelut eruption, 1600Z, 13 Feb 2014
Ash load at 0100Z, 14 Feb 2014 (+9 hr after eruption)
Based on ACC-R
a) Cylinder source (3.5 kg.m$^{-1}$)
 (current operational guidance)
b) Umbrella source (1.8 kg.m$^{-1}$)
Kelut eruption, 1600Z, 13 Feb 2014
Ash load at 0100Z, 14 Feb 2014 (+9 hr after eruption)
Based on ACC-GE11
a) Cylinder source (3.1 kg m\(^{-1}\))
b) Umbrella source (2.8 kg m\(^{-1}\))
Kelut eruption, 1600Z, 13 Feb 2014
Forecast for 0100Z, 14 Feb 2014
(+9 hr after eruption)
[fine ash fraction 0.1]
Percentage of 27 members with ash load > 4 g.m\(^{-2}\)

a) Cylinder source
b) Umbrella source
Kelut eruption, 1600Z, 13 Feb 2014
Forecast for 0100Z, 14 Feb 2014 (+9 hr after eruption)

fine ash fraction 0.001

Percentage of 27 members with ash load > 4 g.m$^{-2}$

a) Cylinder source
b) Umbrella source
Conclusions

• Ensemble output shows spread of outcomes for dispersion of ash – guidance on uncertainty with meteorology
• Simple umbrella source provides improved representation of ash dispersion for large eruption reaching tropopause when compared with satellite observations
• Mass load in DEPS output too high compared to observed satellite estimate by significant factor
 – MER for initialization of DEPS is too high for observed height of eruption column – based on Mastin empirical relation (associated with latent instability in tropical environment)
 – Fine ash fraction too high
 – Poor representation of cloud and precipitation in tropics in NWP models
Outstanding problems and future directions

• Improve utility of satellite products for operations
• Integration of observational data in dispersion modelling
• Optimize use of ensemble models
 – Subsets
 – New inputs (e.g. EC, GFS ensembles)
Thank you