How Climate Change will affect the need for MET Support to Civil Aviation

Dr. Herbert Puempel
Austrocontrol
Chair, Expert Team on Aviation, Science and Climate, CAeM, WMO
Implementation and Science Group, CAEP, ICAO
Issues addressed:

- Overview of state of knowledge on impacts of climate on aviation from a science perspective
- Time lines: Long-term, decadal, interannual, resulting “weather” types
- Summarize state of knowledge regarding climate change risk and resilience – the stakeholder perspective
- A look at extreme phenomena
Scientific issues

• Complex interaction between variability (on an inter-annual to decadal time scale) and long-term trends (if these can be clearly separated from the former?)

• Extreme events: Are they just a result of shifting the Gaussian to the right? What is the role of feedback mechanisms? (Lehmann and Coumou)

• Small to Local Scale hugely complex (e.g. nature of convective storms)
...and more issues:

- Risk management in light of extremes and slowly evolving disasters
- Potential conflicts of interests between different environmental and safety issues
- Linkage between alternative fuels and climate
- Predictability and manageability of high-impact weather and new air traffic systems: Areas for multi-disciplinary research and development
Comparison Observations-Models (Frei et.al.)

Winter precipitation (DJF) obs-models
Confidence in Trends?

• Regional trends may differ significantly from each other (Francis and Vavrus, Screen and Simmonds)
• Observed trends in local scale-phenomena rendered unreliable by automation of observations (hail, tornadoes rarely detected by AWOS)
• Inter-annual variability (ENSO, NAO) very strong, not sure how they are linked to climate trends or obscuring them?
Potential/Expected Changes (Wuebbles et al 2014)
Emerging consensus on some issues:

1. Temperature: Warming at the surface and upper levels [high confidence], cooling of stratosphere regionally
 - More temp extremes at surface, two contributing factors:
 - Gaussian shifted to right (trivial)
 - Complex feedback mechanisms, regional increase in blocking highs (mid-lat)

2. Small changes to jet stream
 - Acceleration (obscured by large variance?), Poleward shift
 - High-Amplitude low wave-number regimes (Francis and Vavrous, Coumou et al.)
 - High uncertainty about CAT (probably shift of affected regions)
 - Massive gaps in data over large areas (Africa, S. America, Pacific)
Role of quasi-stationary system (Coumou et al.)

• “Furthermore, we demonstrate that the anomalous circulation regimes lead to persistent surface weather conditions and therefore to mid-latitude synchronization of extreme heat and rainfall events on monthly timescales. The recent cluster of resonance events has resulted in a statistically significant increase in the frequency of high-amplitude quasi-stationary waves of wave numbers 7 and 8 in July and August.”
Effects on predictability?

• While no detailed studies exist yet, there are some indications that:
 • The increased Available Potential Energy may lead to different characteristics of mid-latitude convection
 • Storms develop in anticyclonic regimes irrespective of the presence of wind shear and gradients
 • Location, intensity and characteristics of storms may defy current NWP prediction methods
Expected Changes...details for aviation

3. Storms and Ice

- More extreme thunderstorms (height of Cb tops, ice content) [High confidence]
 - High Altitude Ice Content expected to increase
 - Tornadic storms and hail: Models seem to indicate a positive trend post-2040, observational trend affected by increasing automation of observations

- Extreme surface precipitation: more large events See Coumou and Lehmann [High confidence]

- Hail and windstorms, ice storm changes:

- Dramatic change of observing system from human to automated systems affecting statistics [Low confidence]
Expected Changes...details for aviation

4. Local conditions (low and ground level)

- Strongly varying by region and also with inter-annual variations (e.g. ENSO, NAO)
 - Coastal regions need better protection: sea level rise [high confidence], extreme events [uncertain]. Cyclones: uncertain.
- Flooding (+extreme precipitation) = more potential for flooding, difficult to detect trend of rare events (Frei et al.)
- Fog and Low Ceiling: again, no uniform trend to be expected, dependency not only on temp. and humidity, but also aerosols
- Consensus on need for regional and local in-depth analyses
Risk Management by stakeholder category

- **Longest time horizon:** Airport planners, Manufacturers, Tourism and town planners
 - Planning horizons around 30 years
 - Not only stationary “end state”, but variations and extremes along the time line to be accounted for
 - Multi-disciplinary approach, including civil engineers, designers, sociologists, life-sciences

- **Medium Horizon:** ANSP, Regulators/legislators

- **Short –time:** Airlines operators
Airports

- Pioneering work done for London Heathrow study, to be adapted to other regions, climate types and infrastructure.
- Agreement on the need for a multi-disciplinary approach, ranging from Bio-Scientists (Pest control, bird migration), Epidemiologists to hydrologists (Water table, flood risk, landslides etc.), all with an understanding of climate change.
- Demand analyses and predictions in mostly tourism-oriented regions (incoming, outgoing).
- Rainfall characteristics (length of drought, wet periods, maximum intensity, water tables).
- Snow fall (clearing capability) and max load for building infrastructure.
Airports

• Frequency, duration, intensity of electric storms causing a shut-down - no clear trend identified as yet, but increase likely
• Duration of low wind, high stability periods with consequences for air quality, wake vortex dissipation, visibility - strong regional variations
• Maximum heat, wind and precipitation stress on buildings and infrastructure
• Regularity, maximum intensity and prevailing temperature at snow fall events, freezing precipitation
• Off-airport impacts on transport and supply infrastructure (access for goods, passengers, staff, electrical power, water)
Manufacturers

- Strong dependency on regulatory (certification) envelope developed by regulators in response to changing conditions, in particular for:
- Take-off performance in hot&moist conditions
 - High altitude and “classical” icing
 - Frequency of lightning strikes in all climate zones (structural impact, life cycle impact)
 - Heavy hail (e.g. recent Delta incident!) – max impact may have to be reconsidered
 - Area and period affected by sand storms, tropical cyclones, other extreme conditions
 - Changes in the location, variability and characteristics of typical flow pattern (jet streams)
Thanks....

• To the group at Potsdam Institute of Climate Change Impact for generous help and direction (Dim Coumou and Jascha Lehmann)

• Prof. Wuebbles for sharing very helpful insight and remarks at the CAEP Workshop in Washington, Feb 2015

• Rory Clarkson for invaluable technical advice
References:

- Daily Precipitation Statistics in Regional Climate Models: Evaluation and Intercomparison for the European Alps
 Christoph Frei (1), Jens Hesselbjerg Christensen (2), Michel Deque (3), Daniela Jacob (4), Richard G. Jones (5) and Pier Luigi Vidale (1)

- Exploring links between Arctic amplification and mid-latitude weather
 James A. Screen and Ian Simmonds
• Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer
 • Dim Coumoua,1, Vladimir Petoukhova, Stefan Rahmstorfa, Stefan Petria, and Hans Joachim Schellnhubera,b,

• Increased record-breaking precipitation events
 • under global warming

• Jascha Lehmann1,2 & Dim Coumou1 & Katja Frieler1 (2015)
 • Climatic Change
 • DOI 10.1007/s10584-015-1434-y