Indian Ocean Subseasonal and Interannual SST Variability

Gabriel A. Vecchi
D.E. Harrison

1. Historical analyses: What can we do with what we have?
2. Looking forward: What would we like to do, and what do we need to be able to do it?
 1. What time/space scales would we like to be able to resolve?
 (or...what’s so special about a month?)
3. In Indian Ocean: sample (and even resolve) subseasonal timescales.

1. NOAA/GFDL, Princeton, NJ, USA, Gabriel.A.Vecchi@noaa.gov
2. NOAA/PMEL, Seattle, WA, USA, D.E.Harrison@noaa.gov
Historical Indian Ocean sampling is poor

Average number COADS.v1 observations per month 1946-1993
Timescales of variability

• I.O. dominated by seasonal variability.

• Also considerable non-seasonal variability:
 – Sub-seasonal (more than just MJO).
 – Inter-annual (ENSO and more?)
 – Inter-decadal and/or trends?
 ~basinwide warming in last 40 years
 cooling in previous 40?
Indian Ocean non-seasonal dominated by sub-seasonal.
SST Energy along 5S in Indian Ocean

Strong 40-60 day energy associated with Nov-April eastward propagating MJO, swings $O(1-2C)$.

Heat-fluxes not enough to explain changes.

(see Harrison and Vecchi 2001, GRL)
What’s the big deal about sub-seasonal variability?

Strong connections to weather over land:
- MJO connects:
 - locally (tropical Indo-Pacific region)
 - remotely (western America, Eurasia and Arctic!)
 - Potential for improvement of >2 week forecasts… (Waliser et al. 2003)

- Other sub-seasonal variability connects locally:
 - e.g. Monsoon breaks over India.
Malaysian Precipitation and MJO

Also remote…

Global Arctic Air Temperature and MJO
(Vecchi and Bond, 2003, GRL)

Pacific NW of USA Precipitation and MJO
(Bond and Vecchi, 2003, Wea. & Forecast.)
The northward propagating summer ISO (25-30 day period)

Bay of Bengal dominated by northward propagating ISO in SW-monsoon.

Active and break monsoon periods.

From Sikka and Gadgil (1981)
Bay of Bengal SST evolution during typical N-Prop ISO

Vecchi and Harrison (2002, J Clim)
Sub-seasonal SST variations in Bay of Bengal are damped (or absent) in NCEP-OI relative to buoy observations (e.g. Sengupta and Ravichadran 2001).

North Bay of Bengal SST Coherent with Monsoon Breaks

(Fu et al., 2003, J. Clim.) find similar variability in CGCM. Coupling modifies breaks.
Sub-seasonal -> interannual variability

Over India, rainfall deficits over the SW-monsoon can result from changes in the strength/number of monsoon breaks.

Changes in sub-seasonal variability result in interannual variability.

Figure from Bhat et al. (2001, BAMS; “BOBMEX: The Bay of Bengal Monsoon Experiment”

Fig. 3. Daily rainfall over central India during 1972 and 1975, which were deficit and excess monsoon rainfall years, respectively. In 1972, active and weak rain spells were well separated with the break during the last week of Jul and first week of Aug clearly seen, whereas in 1975, although there were days of heavy rainfall (active spell), there were no clear-cut breaks.
Sampling Issues
Historical IO data coverage sparse

Number of Months with a COADS SSTA Observation
Conspicuous pattern...
Sub-sample Year 2000 TMI SST data with statistics of 1946-1993 COADS (v.1)

Standard deviation of sub-sampled SST Anomalies
Can result in mis-estimates of climatology
Even if sub-seasonal variability were unimportant

- We need to better sample southern IO.
- Data hole is maximum in NCEP-OI variability. (And of EOFs of NCEP-OI)
- Southern IO interannual variability not necessarily all spurious.
NCEP-OI SSTA variability patterns

EOFs of NCEP OI 12-mo smoothed SSTA

EOF 1 of all data

EOF 2 of all data

EOF 1 of heavy sampling

EOF 2 of heavy sampling
Southern IO variability not necessarily spurious…

GFDL coupled GCM 100-year run.

Figure from Tony Rosati
More observations in southern IO recently

Is change in location of max. variance real?
Summary

- Sub-seasonal variability is prominent in IO.
 - impacts humanity (worldwide).
 - Could alias estimates of longer timescales.

- Historical *in situ* sampling not adequate for:
 - sub-seasonal in IO.
 - southern IO SSTA.

As we look forward we should aim to develop a system that can adequately sample both.
SSTA Variability in Western Arabian Sea much larger in TMI....
….And seasonal variability differs as well.
Buoys agree more with TMI than do ships

Distribution of Difference (TMI-Obs) In Western Arabian Sea during JJAS (1997–2002)

blk->all, red->buoy, grn->ship
Disproportionate amount of SST obs. end in ".0"

Distribution of decimal digit of SST observations in western Arabian Sea (1998-2002)

BLK -> ALL, RED -> BUOYS, GRN -> SHIPS
Ship obs. ending in "0" ‘worse’ than those not ending in "0"

~60% of ship observations not ending in "0" are within 1C of neighbors.

70% of ship observations ending in "0" are more than 1C away from neighbors!
Interannual SST connections to regional Indian Rainfall

Based on Reynolds SST.

Strong regional rainfall connections to Western Arabian SSTA.