The elimination
of spurious trends
in marine wind data
by calibration
with individual pressure differences

Ralf Lindau

Meteorological Institute
Bonn University
Relative portion of Beaufort estimates
12 Hurricane
11 Storm
10 Whole Gale
 9 Strong Gale
 8 Fresh Gale
 7 Moderate Gale
 6 Strong Breeze
 5 Fresh Breeze
 4 Moderate Breeze
 3 Gently Breeze
 2 Light Breeze
 1 Light Air
0 Calm.

Of just sufficient to give steerage way.
Of that in which a man could stand on his head without capsizing.
Of that in which one could just carry a light oar without capsizing.
Of that in which a well-protected vessel could lie, with all sail set.
Of that in which a vessel could lie with all sail set and steer full, or 4 hours.
Of that in which a vessel would go in smooth water for 6 hours.

Wardigeck
Of that which she could securely bear close-recessed main-topgallant
Triple-recessed topgallant, etc.
Double-recessed toposhalls, etc.

Chose-recessed toposhalls and course.

Of that which would reduce her to storm straits.
Of that which no canvas could withstand.
<table>
<thead>
<tr>
<th>Windstärke 0—12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stärke</th>
</tr>
</thead>
<tbody>
<tr>
<td>1—3</td>
</tr>
<tr>
<td>4—6</td>
</tr>
<tr>
<td>7—9</td>
</tr>
<tr>
<td>10—12</td>
</tr>
</tbody>
</table>

Beaufort 4:
The wavelets are becoming more pronounced and longer; all over whitecaps are developing; the breaking of the sea becomes louder and is sounding like enduring murmur.
Spatial gradient of the temporally averaged pressure field

$$\sqrt{\langle \frac{\partial p}{\partial x} \rangle^2 + \langle \frac{\partial p}{\partial y} \rangle^2} \propto \sqrt{\langle u \rangle^2 + \langle v \rangle^2} \neq \langle \sqrt{u^2 + v^2} \rangle$$

Mean pressure differences could be used only if the wind steadiness $\frac{\sqrt{\langle u \rangle^2 + \langle v \rangle^2}}{\sqrt{\langle u^2 + v^2 \rangle}}$ is constant in time.
• In principle triples of simultaneous pressure observations are necessary.

• However, random observation errors would dominate the results by increasing systematically the derived gradients.

• Using more than three simultaneous observations could help, but this would drastically reduce the data base.
relative wind direction = 290
Vg raw = 13.3 m/s
ageos = 17.6 degr
pairs = 1021039
Effect of errors in the wind direction
$\cos(D_1 - D_2)$ vs distance / km

1960 – 1971
40N – 50N
January

$a_0 = 0.804$
$a_1 = -0.40$ per Mm
error = $\arccos(\sqrt{a_0}) = 26.3$ degr
40N – 50N
January 1960 – 1971

$V_g = 14.8 \text{ m/s}$
$V_h = 10.2 \text{ m/s}$

$V_g \text{ raw} = 13.3 \text{ m/s}$
$\text{ageos} = 17.6 \text{ degr}$
$pairs = 1021039$
$A1 = 1.81 \quad A0 = -3.7 \text{ m/s}$
\[G \text{ m/s} \]

\[U \text{ m/s} \]

\[a_1 = 1.55 \quad a_0 = -0.3 \text{ m/s} \]
\[A_1 = 1.81 \quad A_0 = -3.7 \text{ m/s} \]

\[\text{Faktor} = 0.856 \]
\[\text{Const.} = 1.86 \text{ m/s} \]
$a_1 = 0.704 \text{ kn}$
$a_2 = 1.737 \times 10^{-2} \text{ kn}^2$
$a_3 = -3.205 \times 10^{-4} \text{ kn}^3$
$a_4 = 1.789 \times 10^{-6} \text{ kn}^4$
CONCLUSIONS

- A method to detect and eliminate spurious wind trends in COADS is presented.

- The negative trend recorded in the North Atlantic before 1950 is reversed, the positive trend between 1950 and 1979 vanishes after the correction.

- In order incorporate also the growing number of anemometer measurements into the data a function to homogenize these observations with Beaufort estimates is presented.

- After 1980 regional varying trends are found in the homogenized data set which are confirmed by concurrent trends in the geotrophic wind.