Extreme waves in the ECMWF operational wave forecasting system

Jean-Raymond Bidlot
Peter Janssen
Saleh Abdalla

European Centre for Medium range Weather Forecasts
Shinfield Park, RG2 9AX, Reading,
United Kingdom
+44-118-9499-708
jean.bidlot@ecmwf.int
Outline

- ECMWF wave forecasting system.
- Impact of recent improvements.
- Extreme wave forecasting:
 - Ensemble prediction system (EPS)
 - Freak wave
Operational wave forecasting at ECMWF

- A version of WAM cycle 4 (ECWAM) is used at ECMWF.

- It is an integral part of the Centre’s forecasting systems.

- The wave model benefits from improvements in the atmospheric model via the forcing winds. Work on improving the wave model physics, dynamics and data assimilation is continuing.

- Several operational configurations exist.
ECMWF wave model configurations

1) Limited area model (LAW)

- From 9°N to 81°N and 98°W to 42°E
- 28 km grid spacing (→ 15km soon).
- 30 frequencies and 24 directions
- Forced by 10m wind fields from the global atmospheric model.
- Data assimilation of altimeter wave heights (ENVISAT and Jason) and ASAR spectra (ENVISAT).
- 2 daily forecasts (from 0 & 12 Z) extending to day 5.

Forecast wave height on 15/03/2006 12UTC.
ECMWF wave model configurations

2) Global models

- Global from 81°S to 81°N
- Coupled to the atmospheric model (IFS) with feedback of the sea surface roughness change due to waves.
- The interface between WAM and the IFS has been generalised to include air density and gustiness effects on wave growth and more recently neutral winds.
- Data assimilation of ENVISAT and Jason altimeter wave heights and ENVISAT ASAR spectra.

Forecast wave height on 15/03/2006 12UTC.
ECMWF wave model configurations

Deterministic model

- 40 km grid spacing.
- 30 frequencies and 24 directions.
- Coupled to the TL799 model (~25km resolution).
- Analysis every 6 hrs and 10 day forecasts from 0 and 12UTC and 4 day forecasts from 6 and 18 UTC.

Probabilistic forecasts

- 110 km grid spacing.
- 30 frequencies and 24 directions.
- Coupled to the TL399 model (~50km resolution).
- (50+1) 10 day forecasts from 0 and 12Z.
ECMWF wave model configurations

Monthly forecasts
- 1.5°x1.5° grid.
- 25 frequencies and 12 directions.
- Coupled to the TL159 model.
- Deep water physics only.

Seasonal forecasts
- 3.0°x3.0°
- 25 frequencies and 12 directions.
- Coupled to the T95 model.
- Deep water physics only.
ECMWF wave model configurations

ERA40 reanalysis (1957-2002)
- 1.5°x1.5° grid.
- 25 frequencies and 12 directions.
- Coupled to the TL159 model.
- Deep water physics only.
- 45 years of wave analysis
- The data were analysed at knmi.

http://www.knmi.nl/waveatlas

Interim reanalysis (1989 to present)
- 1.0°x1.0° grid.
- 30 frequencies and 24 directions.
- Coupled to the latest TL255 model.
- Shallow physics only.
- Production has started.
- Early assessment indicates a much improved data set.
Monitoring: ECMWF analysis against GTS in-situ data

S.I.: standard deviation of error normalised by the mean of the observations
ECMWF analysis *versus* buoy spectral data

Equivalent wave height bias at all US and Canadian buoys. Operational analysis.
ECMWF forecasts *versus* GTS in-situ data

Operational forecasts

12 months to August, all buoys: wave height rmse expver=0001

- 9309_9408
- 9609_9708
- 9909_0008
- 0209_0308
- 0509_0608
- 9409_9508
- 9709_9808
- 0009_0108
- 0309_0408
- 9509_9608
- 9809_9908
- 0109_0208
- 0409_0508

Hs RMSE (m)

Forecast range (hours) forecast from 12UTC
ECMWF forecasts *versus* own analysis

Forecast scores are also obtained by verifying against own analyses as it is done with atmospheric fields.

WAVE_G FORECAST VERIFICATION 12UTC
HEIGHT OF WAVES SURFACE LEVEL
STANDARD DEVIATION OF ERROR FORECAST
N.HEM LAT 20.000 TO 90.000 LON -180.000 TO 180.000

![Graph showing standard deviation of error for N.Hem.](image)

Standard deviation of error for N.Hem.
Ensemble forecasting for waves

• Beside its deterministic model, ECMWF also runs an ensemble of 50 forecasts twice daily.

• These 50 forecasts are initialised from a set of perturbed analyses, designed to represent the inherent uncertainty in the operational analysis. Similarly, the uncertainty in the model physical parametrisation is accounted for by stochastic perturbations. Because of limited computer resources and lack of predictability of small scales, these forecasts are run with a coarser resolution.

• A control forecast is also run at that reduced resolution.

• These (50+1) forecasts are used to derive forecast error estimate and forecast probabilities.

• Waves are in the EPS since June 1998.
Old example: 10-11 November storm in the Norwegian Sea

From the EPS wave forecasts it is possible to derive probabilities for certain wave conditions.
Katrina: SWH probability in the then operational system T255 (~80km) from operational analysis in +84h fcs

The top-left panel shows the significant wave height (SWH) in the T799 analysis (cont interval is 2m).

The other panels show the probabilities that:

- SWH>6m (t-right)
- SWH>8m (b-left)
- SWH>10m (b-right)

Prob cont iso are 2/5/10/20/40/60%.
Katrina: SWH probabilities in the new operational system T399 (50 km) from operational analysis in +84h fcs

The top-left panel shows the significant wave height (SWH) in the T799 analysis (cont interval is 2m).

The other panels show the probabilities that:

- SWH>6m (t-right)
- SWH>8m (b-left)
- SWH>10m (b-right)

Prob cont iso are 2/5/10/20/40/60%.
Katrina: SWH t+84h fcs at buoy, T399 and T255: resolution matters

Buoy 42040 obs for 12UTC of 29 Aug and t+84h forecasts from 26 Aug 00UTC.

Bottom-left panel: buoy measured SWH of 15m. ECMWF analysis at T511 and T799 produced SWH of 12m. EPS forecasts were up to ~5m (top-right), while VAREPS forecasts reached 9m (bottom-right).
Recent example: extra-tropical Gordon landfall in Ireland

Analysed mean Sea Level pressure and 10m winds
Extra-tropical Gordon landfall: 3-day forecasts

ECMWF EPS FOR: MS 62994
DATE: 20060919 00Z LAT: 51.7 LONG: -6.7
Significant wave height (m)

10m wind speed (m/s)

Peak wave period (s)

Probability that SWH will exceed 6m

Perturbed forecasts
Control forecast
Deterministic forecast

DATE: 20060919 00Z LAT: 51.7 LONG: -6.1

Significant wave height (m)

10m wind speed (m/s)

Peak wave period (s)
Extra-tropical Gordon landfall: 2-day forecasts

DATE: 20060920 00Z LAT: 51.7 LONG: -6.7

ECMWF EPS FOR: M5 62094

Significant wave height (m)

10m wind speed (m/s)

Peak wave period (s)

Probability that SWH will exceed 6m

Perturbed forecasts
Control forecast
Deterministic forecast

DATE: 20060920 00Z LAT: 50.1 LONG: -6.1

ECMWF EPS FOR: Sevenstones 62107

Significant wave height (m)

10m wind speed (m/s)

Peak wave period (s)
Extra-tropical Gordon landfall: 1-day forecasts

Perturbed forecasts

Control forecast

Deterministic forecast

Significant wave height (m)

10m wind speed (m/s)

Peak wave period (s)
Extra-tropical Gordon landfall: analysis

ECMWF Analysis VT: Friday 22 September 2006 00UTC Surface: significant wave height

Freak waves

- Extreme conditions can arise on much smaller time scale as modelled by current spectral wave model: i.e. as freak waves.

- From Janssen (2003), it appears that nonlinear wave-wave interaction is one of the possible mechanisms that will lead wave energy focussing.

- Waves needs to be sufficiently coherent and steep as quantified by the Benjamin-Feir Index (BFI), namely the ratio of the steepness of the waves and the width of the spectrum. A large BFI corresponds to favourable condition for freak waves.

- For freak waves prediction, probabilistic approach is feasible, following Janssen (2003), there is a link between BFI and the kurtosis of the sea surface elevation.
Wave model products: Freak waves

Since October 2003, 3 new wave parameters have been produced that characterize extreme sea state:

For example, the kurtosis of the sea surface elevation can be used to derive the enhanced probability that waves are larger than twice the significant wave height:

One day forecast of enhanced probability of extreme events (twice Hs) for 8th February 2004.
Wave model products: Freak waves

Enhanced probability of extreme events for

21 Sep 2006, 18 UTC

22 Sep 2006, 00 UTC

9th int. workshop on wave hindcasting and forecasting
Final words:

- Improved wave model and atmospheric model yields better forecasts.
- Probabilistic forecast can be useful in assessing likelihood of severe waves.
- Freak waves: ongoing validation of new parameters.