Technical challenges of using high precision atmospheric O\textsubscript{2} measurements as a tracer for determining carbon fluxes in terrestrial ecosystems

Penelope A. Pickers1, Emanuel Blei1, Andrew C. Manning2, Yuan Yan3, Alex J. Etchells1, Nick Griffin1, Alexander Knohl3,3

1Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK.
2University of Goettingen, Bioclimatologie, Büsgenweg 2, 37077 Göttingen, Germany.
3University of Goettingen, Centre of Biodiversity and Sustainable Land Use (CBL), 37073 Göttingen, Germany.

Introduction and project aims

Atmospheric oxygen (O\textsubscript{2}) measurements are a very useful tool for studying carbon cycle processes at the global scale, and have previously been used, for example, to separate the land and ocean sinks for carbon dioxide (CO\textsubscript{2}) (see Keeling and Manning, 2014). Until now, the potential of O\textsubscript{2} measurements at the ecosystem level has not been exploited, largely owing to the significant technical challenges faced in measuring atmospheric O\textsubscript{2} to an accuracy and precision of a few ppm or less against a background mole fraction of 21%.

Here, we introduce the ERC grant OXYFLUX: “Oxygen flux measurements as a new tracer for the carbon and nitrogen cycles in terrestrial ecosystems”. OXYFLUX aims to develop high precision O\textsubscript{2} flux measurements as a new ecosystem-scale tool for understanding carbon and nitrogen cycle processes in the terrestrial biosphere.

Methods and experimental design

- In OXYFLUX we will develop a fully automated system to make high precision O\textsubscript{2} and CO\textsubscript{2} flux measurements from tree branches, stems and soils (See Figure 1).
- The system can be roughly divided into three parts: chambers, gas delivery/plumbing and gas analysis.

Technical challenges:
- High variability between soil, stem and branch fluxes. Branch fluxes also vary significantly with temperature, incoming radiation and season.
- Chamber background air concentrations also vary over time, which need to be accounted for.
- O\textsubscript{2} and CO\textsubscript{2} concentrations have to be kept within a relatively narrow calibration range. All O\textsubscript{2} and CO\textsubscript{2} measurements will require rigorously calibration using a protocol similar to that employed in Keeling et al. (1998).
- The analysers operate at relatively small fixed flowrates, but fast gas delivery has to be achieved over long distances.
- Chamber materials need to be transparent, inert and impermeable to O\textsubscript{2}.
- Gas delivery to the analysers and switching has to minimise fractionation of O\textsubscript{2} with respect to N\textsubscript{2}.

Figure 1. Schematic of chamber and instrument setup for initial experiment

- Chamber measurements of the O\textsubscript{2}/CO\textsubscript{2} ratio will be later integrated into the multi-layer canopy model CANVEG (Baldocchi, 1997).
- The chamber-level O\textsubscript{2}/CO\textsubscript{2} ratios will be represented as functions of environmental variables within CANVEG to enable the prediction of O\textsubscript{2}/CO\textsubscript{2} ratios from meteorological data.
- The CANVEG model will also be used to produce fluxes for different ecosystem components (branch/leaf, stem and soil), which will be optimized using our chamber measurements.
- CANVEG will enable our chamber measurements to be scaled to the ecosystem level for comparison with our eddy covariance O\textsubscript{2} measurements.

Figure 2. Left: CO\textsubscript{2} and O\textsubscript{2} low flow measurement system (‘Calvin’). Right: O\textsubscript{2}, CO\textsubscript{2} and H\textsubscript{2}O Aerodyne fast response analyser (‘Hobbes’).
- O\textsubscript{2} and CO\textsubscript{2} fluxes will be measured using an ‘Oxzilla’ lead fuel cell O\textsubscript{2} analyser (Sable Systems International Inc.) in series with a Li-820 CO\textsubscript{2} analyser (LI-COR Biosciences), see ‘Calvin’ in Figs. 1 and 2.
- Air from the soil, stem and branch chambers will be sampled via a high flow rate (0.9 L min-1) for CO\textsubscript{2} and H\textsubscript{2}O using an Li-840A analyser (LI-COR Biosciences), see ‘IRGA’ in Fig. 1. A specially designed ‘dip-tube tee’, which does not cause significant O\textsubscript{2}/N\textsubscript{2} fractionation will be used to sub-sample air, which is delivered to Calvin at 100 mL min-1.
- A prototype laser-based O\textsubscript{2}, CO\textsubscript{2} and H\textsubscript{2}O instrument from Aerodyne Inc. (see ‘Hobbes’ in Fig. 2), which can operate with a high flow rate (6 L min-1) and measuring frequency (up to 10 Hz), will be used to make O\textsubscript{2} and CO\textsubscript{2} eddy covariance measurements above the canopy.

Figure 3. O\textsubscript{2} artefacts produced by typical chamber instrumentation

We have found that instrumentation typically used to make CO\textsubscript{2} chamber measurements can be unsuitable for O\textsubscript{2} chamber measurements, owing to the plastic tubing and ‘tee’ junctions found within them. For example, we tested some instrumentation from LI-COR Biosciences (Fig. 3) and found large O\textsubscript{2} artefacts (an acceptable bias ≤ 2 per meg).

Modelling

- Chamber measurements of the O\textsubscript{2}/CO\textsubscript{2} ratio will be later integrated into the multi-layer canopy model CANVEG (Baldocchi, 1997).
- The chamber-level O\textsubscript{2}/CO\textsubscript{2} ratios will be represented as functions of environmental variables within CANVEG to enable the prediction of O\textsubscript{2}/CO\textsubscript{2} ratios from meteorological data.
- The CANVEG model will also be used to produce fluxes for different ecosystem components (branch/leaf, stem and soil), which will be optimized using our chamber measurements.
- CANVEG will enable our chamber measurements to be scaled to the ecosystem level for comparison with our eddy covariance O\textsubscript{2} measurements.

References and acknowledgements

OXYFLUX is funded by the European Research Council grant n° 682512

Presented at the GGGF meeting 28-31 August 2017, Dübendorf, Switzerland