Challenge to Develop and Demonstrate New User-Oriented Forecast Verification Metrics

Barbara Brown (NCAR), Beth Ebert (BOM), Thomas Haiden (ECMWF), Martin Göber (DWD), Marion Mittermaier (Met Office), and Pertti Nurmi (FMI)

HIW Workshop
April 2016
“Forecasts contain no intrinsic value. They acquire value through their ability to influence the decisions made by users of the forecasts.”

“Allan H. Murphy, *Weather and Forecasting*, 8, 1993: “What is a good forecast: An essay on the nature of goodness in forecasting”
Relationship between “Quality” and “Value”

Improving the quality of a forecast (i.e., verification scores) does not guarantee an increase in forecast value.

From Murphy 1993

Fig. 4. Relationship between forecast accuracy and forecast value in the cost–loss ratio situation, with climatological probability $x = 0.3$ and cost–loss ratio $C/L = 0.2$ (taken from Murphy and Ehrenorfer 1987).
Levels of user focus

Level 0: Conventional *measures-based approaches*
- Best for administrative purposes

Level 1: Broad *diagnostic approaches*
- Evaluate variables of interest to users
- User-selectable information (stratifications, thresholds)
- Often graphical
- Confidence intervals
Levels of user focus

Level 2: *Features-based and enhanced diagnostic approaches applied*
- Evaluation of **multiple attributes** of broad interest to users

Level 3: *User-specific approaches and measures*
- Interact closely with users to determine meaningful approaches and measures
- May include specialized datasets that are user-specific

Level 4: *Forecast value estimated, making use of user-focused verification information*
- Close interaction with users
- Deep understanding of users’ decision-making and applications of forecasts
Current status

• Typical verification is at Levels 0 or 1
• Level 2 - features based – is becoming more common as people see the advantages of these approaches
• Levels 3 and 4 are very limited and still often hard to reach
• **Hence**: The User-oriented verification method **Challenge**!
 – An opportunity for clever people to move this field forward in significant ways
• First some examples...
Solar Power forecasts:
Adapting standard metrics to meet user needs

Preferences for end users:
- Raw Values (Non-normalized)
- Normalized by Capacity/Clear Sky
- Normalized by Actuals

Sum of Errors over Forecast Period

<table>
<thead>
<tr>
<th>Component</th>
<th>Intra Hour</th>
<th>Day Ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp1</td>
<td>960 (-76 / 1036)</td>
<td>858 (-79 / 937)</td>
</tr>
<tr>
<td>Comp2</td>
<td>1418 (-43 / 1461)</td>
<td>1295 (-43 / 1339)</td>
</tr>
<tr>
<td>Comp3</td>
<td>1433 (-33 / 1466)</td>
<td>1106 (-5 / 1111)</td>
</tr>
<tr>
<td>Comp4</td>
<td>510 (-84 / 594)</td>
<td>n/a</td>
</tr>
<tr>
<td>Comp5</td>
<td>1748 (-12 / 1760)</td>
<td>n/a</td>
</tr>
<tr>
<td>Comp6</td>
<td>1004 (-40 / 1044)</td>
<td>n/a</td>
</tr>
<tr>
<td>Blended Model</td>
<td>226 (-92 / 318)</td>
<td>178 (-110 / 288)</td>
</tr>
</tbody>
</table>

User: Energy Trader
Sum of Errors over entire day more informative

Courtesy T. Jensen
Capturing Energy Ramps

Frequency Bias = \(\frac{\text{# of Fcst Events}}{\text{# Observed Events}} \)

Baseline

One Component of System

Over Fcst

Under Fcst

Blended System

Credit: T. Jensen
Performance Diagram

Easy way to display 4 Categorical Metrics at one time and assess overall skill

This example shows stratification by ramp intensity for 3 short range forecast bands

User: Forecaster

Lines of Constant FBias

3-6 hr forecast

Over-Predict # events

Under-Predict

0-1 hr forecast

Success Ratio (1-False Alarm Ratio)
Example: flight time error (FTE) in aviation

FTE model – equivalent to a non-linear 4-D weighting of forecast wind speeds along a trajectory

(Source: UK Met Office)
Example: cost/loss framework

PEV of forecasts of wind speed >80th percentile (Source: ECMWF)
Other user-oriented verification methods

• Conditional verification tailored to the user (e.g. wind speed error when there is snowfall, for snow drift forecasts)
• Object-oriented verification of the onset and cessation of events (e.g. for aviation)
• . . .

Much left to be explored by creative minds!
Challenge for best new user-relevant verification method

• Sponsored by WMO Joint Working Group on Forecast Verification Research and WWRP High Impact Weather (HIW) project; joined by S2S and Polar Prediction

• Focus:
 – Applications: all applications of meteorological and hydrological forecasts
 – Metrics can be quantitative scores or diagnostics (e.g., diagrams)

• Criteria for being selected as “best”:
 – Originality, user relevance, intuitiveness, simplicity and ease of computing, robustness, and resistance to hedging.
 – Desirable characteristics: (i) Clear statistical foundation;
 (ii) Applicability to a broader set of problems

• Dates:
 – Formal announcement: Sept 2015 (here and now!)

• Prize: Invited keynote talk at the 7th International Verification Methods Workshop in 2017

Contact verifchallenge@ucar.edu for more information
See website at http://www.wmo.int/pages/prog/arep/wwrp/new/FcstVerChallenge.html
Develop and Demonstrate the Best New User-Oriented Forecast Verification Metric

Challenge

Contest run by WMO Joint Working Group on Forecast Verification Research in support of the WWRP High Impact Weather Project

Aim: Promote user-oriented verification, that is, quantitative assessment of forecast quality in terms that are meaningful to particular kinds of forecast users

Scope:
- All applications of meteorological and hydrological forecasts
- Users include industry, emergency management, public, ... many possibilities!
- Metrics may be scores or diagrams, must be new
- Anyone with a good idea (individuals, teams) can enter

Prize: Paid attendance and keynote talk at next International Verification Methods Workshop in 2017. All participants will be invited to submit an abstract to the workshop.

How to enter:
www.wmo.int/pages/prog/arep/wwrp/new/FcastVerChallenge.html

Timeline:
- Challenge begins: September 2015
 - Deadline for entries: 31 October 2016
 - Announcement of winner: Jan 2017

Further information
verifchallenge@ucar.edu
Develop and Demonstrate the Best New User-Oriented Forecast Verification Metric

Joint Working Group on Forecast Verification Research

Please correspond by 31 October 2016

verifchallenge@ucar.edu