Field evaluation of the Maximum Entropy Production model

WWOSC 2014
Montréal, Canada

Morais A., Parent A.C., Anctil F., and Music B.
Université Laval, Département de génie civil et de génie des eaux
Why Maximum Entropy Production model?

Potential evapotranspiration based on empirical relationships that does not close the energy budget

Is there a simple model that would include the energy budget closure and provide evapotranspiration for use with conceptual models and a non-stationary climate?
Outline

- Model description
- Methodology
- Results
- Conclusion
The Maximum Entropy Model: Model derived from thermodynamics (Wang and Bras 2012)

- «Maximization of the transpiration/evaporation rate and the corresponding heat fluxes under the constraint of Rn is the most probable and macroscopically reproducible thermodynamic process among all possible partition of energy fluxes.» (Wang and Bras, 2007)

- Based on the theory of maximum entropy production of Dewar (2005)

- With constraint of surface energy balance:

 Evaporation: $Rn = G + H + E\lambda$
 Transpiration: $Rn = T\lambda + H$
Equations of the 2 models:

Evaporation

\[
E = B(\sigma)H \\
G = \frac{B(\sigma) I_s}{\sigma} \frac{I_0 H|H|^{-\frac{1}{6}}}{H}
\]

\[
\sigma(T_s, q_s) = \frac{q_s}{T_s} \frac{\lambda^2}{c_p R_v T_s}
\]

Transpiration

\[
T = \frac{R_n}{1 + B^{-1}(\sigma)} \\
H = \frac{R_n}{1 + B(\sigma)}
\]

\[
B(\sigma) = 6 \left(\sqrt{1 + \frac{11}{36} \sigma} - 1 \right)
\]

\[
I_0 = \rho c_p \sqrt{C_1 \kappa z} \left(C_2 \frac{\kappa z g}{\rho c_p T_0} \right)^{-\frac{1}{6}}
\]

\[
I_s = \text{Thermal inertia of soil}
\]
The Canadian Land Surface Scheme (CLASS)

- Sophistic 1 D physical Land surface Scheme for use in atmospheric models
- Good reference since the model is well known and has been validated for a variety of land type.
- CLASS is only used as a comparison tool for the evaluation of the MEP model, if the MEP model gives similar outputs we will gain more confidence in his application.
Field evaluation

Experimental data

- Two micro-meteorological stations located in a potato field, St-Ubalde, Qc (N46 45', W72 20')
- Complete season: June 6th – October 8th 2013 (125 days)
- Observations of latent (Lv) and sensible (Ls) heat fluxes derived from the eddy covariance method

Models

- Maximum Entropy Production model (MEP) from Wang and Bras 2012
- Canadian Land Surface Scheme 3.5 (CLASS) from Vershegy 1992
Meteorological inputs

- Rain gauge CS700, Campbell SCI Precipitation (pr)
- Pyranometer SP-Lite, Kipp & Zonen Global radiation at the surface (rs)
- Net radiometer NR-Lite, Kipp & Zonen Net radiation at the surface (rn)
- Barometer 06103, R.M. Young Atmospheric pressure (ps)
- Heat flux plates HFP01SC, Hukse Flux Soil heat flux (G)
- IRGA LI-7500, LI-COR Water vapour and air temperature (qa, ta)
- 3-D sonic anemometer CSAT3, Campbell SCI 2m wind speed in 3D (v)

<table>
<thead>
<tr>
<th>MEP</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>rn, qa, ta</td>
<td>rs, rl**, qa, ta, v, pr, ps</td>
</tr>
</tbody>
</table>

** rl : Downwelling longwave radiation

How to distinguish between evaporation and transpiration?
The leaf area index (LAI)
Two indices to represent the LAI:

- fg : Ground fraction
- fc : Canopy fraction

100% Bare soil: $fg = 1, \quad fc = 0$

Bare soil and crops: $fg = (1 - fc), \quad fc = \mathcal{F}(LAI)$

100% crops: $fg = 0, \quad fc = 1$

$ETR = E$

$ETR = (fg \times E) + (fc \times T)$

$ETR = T$
Energy budget
Evapotranspiration and energy components
<table>
<thead>
<tr>
<th>Statistics</th>
<th>MEP</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evapotranspiration based on LAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE Flux (W m(^{-2}) d(^{-1}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensible</td>
<td>39.20</td>
<td>40.63</td>
</tr>
<tr>
<td>Latent</td>
<td>32.00</td>
<td>33.99</td>
</tr>
<tr>
<td>Ground</td>
<td>22.15</td>
<td>15.73</td>
</tr>
<tr>
<td>RMSE ETR (mm d(^{-1}))</td>
<td>0.84</td>
<td>0.75</td>
</tr>
<tr>
<td>PBIAS Flux (%)</td>
<td>-79</td>
<td>13</td>
</tr>
<tr>
<td>Sensible</td>
<td>6</td>
<td>-72</td>
</tr>
<tr>
<td>Latent</td>
<td>-12</td>
<td>-10</td>
</tr>
<tr>
<td>Ground</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Latent heat flux

![Graph showing latent heat flux comparison between MEP and Observed, and MEP and CLASS models.](image-url)
Sensible heat flux

- MEP
- Observed

- MEP
- CLASS

L_s (W/m²)

DOY

239 240 241 242 243 244 245 246 247 248 249 250
Ground heat flux

![Graph of Ground heat flux showing comparison between MEP and Observed data, as well as MEP and CLASS data. The x-axis represents DOY from 239 to 250, and the y-axis represents G (W m⁻²).]
Conclusion

- MEP gave encouraging results for use as an alternative evapotranspiration model
- Advantage of only requiring a few meteorological inputs and physiological parameters
- A simple and general model which may fit for global scales
Merci pour votre attention!

Thank you for your attention!