Moving towards a resilient transport network for the future: integrating meteorology, engineering and social perspectives

Dr Andrew Quinn
School of Civil Engineering
West Coast Mainline, UK, June 28th 2012
Getting the trains to run on time
Getting the trains to run on time
• What will be the nature of the UK transport system in 2050, both in terms of its physical characteristics and its usage?
• What will be the shape of the transport network in 2050 that will be most resilient to climate change?
Change is normal

- EU roadmap Future of Transport 2050
 - Modal shift – “business as usual” not an option
- Over past 50 years in UK
 - 800% increase in road traffic
 - $1:1 \rightarrow 8:1$ road:rail tonne kms of freight moved
- Changing climate (whatever the cause)
 - “Anyone is allowed to have their own opinion, but not their own facts” - Sir John Beddington
- Changing social environment
 - Travel more and for different reasons
Prediction is very difficult, especially about the future (Niels Bohr)

- So what future should we plan for?
 - “Resilience” as flexibility rather than resistance
- How can transport infrastructure be flexible?
 - Maintenance cycles
- Current tools
 - Qualitative not Quantitative
 - Value capacity over resilience
 - Discounting the future
Modelling infrastructure resilience

• Physical infrastructure responds over different spatial and time scales
 • Short-term local drainage,
 • Long-term stability of embankments
 • Response to more intense rainfall in a drier climate?

• Network response is not necessarily the sum of individual infrastructure responses

• What defines network failure?
 • travel delay or events which close the network
User-centred resilience

• Passengers are concerned with mobility rather than particular travel modes
• Infrastructure owners are concerned with revenue
• Mobility is embedded in a wide range of social relationships
 • Not just economic
 • although may have economic consequences
 • e.g. Support for an ageing population
Plausible Futures

• Although we don’t know the destination we know the factors that could change:
 • Social drivers for transport demand
 • Economic supply and demand for transport
 • Environment and Climate
• These need to be included in any analysis
• Multiple perspectives on resilience are also required
Case study route

- London-Glasgow route corridor chosen
 - Economically important
 - Climatic factors vary
 - Geographic diversity
 - Significant sub-routes
Climate and Weather

- **UK Climate Projections (UKCP09)**
 - presents probabilities of different future climates
- **Weather Generator**
 - statistical method of creating sequences of future daily (or hourly) weather that are consistent with climate change projections
 - for a particular location

2050s: 33%/67% probability level
Summer & Winter mean precipitation
Social and Economic

- Many different organisations do forecasts.
- Only sure fact is all of them are wrong.
- Key is the ability to include:
 - Change in behaviour (modal shift)
 - Change in infrastructure and technology
 - Change in attitude (acceptance of disruption)
 - Change in population (and demographics)
 - Change in economy (demand and supply)
 - Change in technology
Calculating Resilience

What has been considered

- Modal choices
- Numbers of users
- Types of users
- Attitudes to disruption
- Infrastructure condition

- Climate change
- Weather Generator
- Not one but many iterations

Calculating Resilience
People do the funniest things

• Major study of travel behaviour
 • Over 2000 respondents
 • What do people currently do?
 • What would people do in the event of disruption?
 • When has a journey failed?
“We travel for fulfilment” (Hilaire Belloc)

• On average long distance travellers decide not to travel if likely delays exceed 2 hours

• ‘Failure’ of public transport
 • Exceeding 45 minute delay
 • Overnight rescheduling without a hotel/refund
 • Toilet facilities / heating are not working
“Half the fun of the travel is the aesthetic of lostness” (Ray Bradbury)

• ‘Failure’ with private transport
 • Exceeding 60 minute delay
 • Road closures
• Less likely to cancel

• 42% would not know exactly which route to follow from London-Glasgow
 • (c.f. 27% rail travellers)
Modal shift

- In heavy snow and ice:
 - 22% people will attempt to travel even when an official warning of ‘not to travel unless absolutely necessary’ is in place.
 - $+25\%$ people do not travel.
 - Rail is a preferred mode.

- In heavy rain:
 - $+6\%$ people do not travel.
 - Rail is the preferred mode.

- In very hot weather:
 - $+4\%$ people do not travel.
 - Air is the preferred mode.
Calculating Resilience

What has been considered

- Modal choices
- Numbers of users
- Types of users
- Attitudes to disruption
- Infrastructure condition
- Climate change
- Weather Generator
- Statistics of network behaviour
- Delays and Recovery
- Calculating Resilience
Calculating resilience

1000 journeys today

1000 journeys in 2050

Change in resilience

Measured as changing number of journeys considered to have ‘failed’
Percentage change of rain-related journey failures relative to baseline for 2050s and 2080s (central estimates)

- **Summer**
 - medium emissions
 - high emissions

- **Winter**
 - medium emissions
 - high emissions
Disaster preparedness

- Electricity/telecoms – weeks
- Road/Rail – months
- Ports/Terminals – years

Aceh province – Jan 2005
ADF project photograph
Disaster preparedness

1. Design life of structure
2. Service life of structure
3. Emergency function of structure system

- Cost-benefit analysis?
- Whole-life cost?
- Resilience as a service?
Conclusions

• Resilience is not an ‘extra’
• Transport must be considered as a system
 • Climatic, Environmental and Social elements
 • Multiple stakeholder perspectives
• Transport infrastructure development needs to be considered with DRM in mind
 • Especially in developing areas
Other projects

- LivingRAIL
 - Barriers (technical and policy) to modal shift to rail
 - Such modal shift must consider disruption
- RSSB – TRaCCA
 - Developing knowledge throughout the rail industry
 - Metrics and Systems thinking in disruption analysis
- MOWE-IT
- Wind Alarm systems
 - Using new NR weather data to improve preparedness, response and recovery to extreme events
- iBUILD – interdependent infrastructure
 - New business models for urban infrastructure development