Verifying deterministic and probabilistic forecasts of objectively clustered Weather Regimes

Ric Crocker, Rob Neal, David Fereday
Table of Contents

• Objectively clustered weather regimes
• Applying weather regimes to forecasts
• Verifying the forecasts
Weather Regimes

Requirement:-

A weather regime forecast system (to aid forecasters and decision makers) - which is objective and relocatable and can be applied across multiple timescales.

The requirement for relocatability means that we need the ability to generate a bespoke set of weather regimes for each model area using a similar method. Therefore have to avoid pre-existing weather regime types (e.g Grosswetterlagen or Lamb Weather Types) which are specific to certain regions.
Generate weather regimes using Objective Clustering

• Create some weather regime patterns over the specified area - which situations occur most often?
• Need 2 things – A Dataset and a Clustering method.
• Used the EMULATE* gridded dataset of 1850-2003 – MSLP over North Atlantic and Europe. (~5° resolution)
• Use Simulated Annealing** (variation of k-means)
• Created 30 clusters (and then 8)

© Crown copyright Met Office
Regime MSLP and anomaly composites

Wide spread of pressure patterns and anomaly intensities.

Each has been given a UK-centric description by a forecaster.
8 Combined Regimes - MSLP

- 30 clusters into 8 regimes
- Combine highly correlated regimes
- Long-range, large-scale patterns
- Ensures larger data sets when we start verifying... and makes verification a little bit easier!
Assign forecasts to regimes

- Now can take a forecast and work out which regime is being forecast for any particular day (at 12Z).
- Similarly generate a ‘Truth’ Regime for each day.
- Regime assignment is based on the member and regime pairing with the smallest area average grid-point difference (with latitudinal weighting) between member PMSL anomalies and regime PMSL anomalies.

- Run for 4 different models (for Jan 2010-June 2014)
 - Met Office Global Model (Days 1-6) (Deterministic)
 - ECMWF (Days 1-15) (Ensemble)
 - MOGREPS-15 (Days 1-15) (Ensemble)
 - GloSea (Days 1-51) (Coupled seasonal ensemble)
Regime assignment is based on the member and regime pairing with the smallest area average grid-point difference between member PMSL anomalies and regime PMSL anomalies.
Example of 8-regime output

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blocked</td>
<td>17.0%</td>
</tr>
<tr>
<td>Regime 2</td>
<td></td>
<td>Cyclonic Wly</td>
<td>15.0%</td>
</tr>
<tr>
<td>Regime 3</td>
<td></td>
<td>Unbiased NWly</td>
<td>18.9%</td>
</tr>
<tr>
<td>Regime 4</td>
<td>31</td>
<td>45</td>
<td></td>
<td>Unbiased SWly</td>
<td>13.9%</td>
</tr>
<tr>
<td>Regime 5</td>
<td></td>
<td>Anticyclonic Sly</td>
<td>10.3%</td>
</tr>
<tr>
<td>Regime 6</td>
<td></td>
<td>Anticyclonic SWly</td>
<td>10.6%</td>
</tr>
<tr>
<td>Regime 7</td>
<td>1</td>
<td>6</td>
<td></td>
<td>Cyclonic SWly</td>
<td>9.0%</td>
</tr>
<tr>
<td>Regime 8</td>
<td></td>
<td>Anticyclonic Wly</td>
<td>5.2%</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Verifying the behaviour of the underlying forecasts in regime space – not the regimes themselves.

How well do the models forecast the regimes with leadtime?

Do different models behave differently?

Can we generate a simple score for the systems?

How does the starting regime influence the skill of the regime forecasts?
Frequency – ECMWF (8 regimes)

Met Office Global Model Deterministic Values

Underforecasting

Overforecasting
Frequency - Mogreps-15 (8 regimes)

Overforecasting

Underforecasting
Reliability – EC day 12

- Overforecasting
- Underforecasting
- Few high probabilities

© Crown
Deciles are clustered in the bottom corner. Low HR/FAR for these low frequency probabilities.

But still show overall skill.

At shorter leadtimes we see the generation of higher probabilities and increased skill.
Scoring the regimes

• Multi-event contingency table (for each leadtime)
• Data is not ordinal
• Heidke Skill score or Peirce Skill score

<table>
<thead>
<tr>
<th>Observed Regime</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast regime – Day 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7937</td>
<td>1235</td>
<td>4349</td>
<td>972</td>
<td>2848</td>
<td>3046</td>
<td>2667</td>
<td>2446</td>
</tr>
<tr>
<td>2</td>
<td>936</td>
<td>7699</td>
<td>3320</td>
<td>2512</td>
<td>851</td>
<td>2095</td>
<td>2657</td>
<td>2877</td>
</tr>
<tr>
<td>3</td>
<td>4296</td>
<td>3004</td>
<td>6999</td>
<td>1099</td>
<td>1043</td>
<td>2007</td>
<td>2528</td>
<td>2688</td>
</tr>
<tr>
<td>4</td>
<td>1337</td>
<td>2738</td>
<td>1612</td>
<td>2846</td>
<td>2153</td>
<td>1746</td>
<td>2478</td>
<td>1716</td>
</tr>
<tr>
<td>5</td>
<td>3168</td>
<td>983</td>
<td>1524</td>
<td>1688</td>
<td>3631</td>
<td>1771</td>
<td>2570</td>
<td>1291</td>
</tr>
<tr>
<td>6</td>
<td>2324</td>
<td>1732</td>
<td>2668</td>
<td>1278</td>
<td>1558</td>
<td>4583</td>
<td>696</td>
<td>2807</td>
</tr>
<tr>
<td>7</td>
<td>4257</td>
<td>2636</td>
<td>3638</td>
<td>2065</td>
<td>2667</td>
<td>1247</td>
<td>7859</td>
<td>1233</td>
</tr>
<tr>
<td>8</td>
<td>2445</td>
<td>2843</td>
<td>3229</td>
<td>1355</td>
<td>1127</td>
<td>2802</td>
<td>729</td>
<td>3983</td>
</tr>
</tbody>
</table>

Total: 26700 22870 27339 13815 15878 19297 22184 19041

© Crown copyright Met Office
Brier score and decomposition

- Use the probabilistic information

Sample Climatology

Mean Brier Score

Can resolve more frequent regimes better than less frequent ones.

Resolution tails off with leadtime

Good Reliability

© Crown copyright Met Office
We can compare the Brier Skill scores from two different models to see the differences

ECMWF appears to score better than **Mogreps-15** for all regimes

Mogreps-15 has fewer members and coarser resolution
Skill conditioned on starting regime

Variable Baseline with leadtime

Starting in Regime 1 better at mid-leadtimes than starting in Regime 3

Drop in skill

When forecasting regime 1: starting in regime 4 gives more skill at days 6-10 than starting in regime 6
Further Work

• Seasonal breakdown.
• Focussed subsets of the 30-regimes.
• Weather Impacts - Investigate impacts associated with each weather regime.
• Regime durations.
Questions and answers