Applying GSI 3DVAR-Ensemble Hybrid Data Assimilation System for Rapid Refresh with Global and Regional Ensembles

Ming Hu1,2, David Dowell2, Steve Weygandt2, Stan Benjamin2, Jeff Whitaker3, Curtis Axlander1,2

1CIRES, University of Colorado at Boulder, CO, USA,
2NOAA/ESRL/GSD/AMB, Boulder, CO, USA
3NOAA/ESRL/PSD, Boulder, CO, USA
Introduction to RAP

- **The Rapid Refresh (RAP)** is a NOAA operational hourly updated regional numerical weather prediction system. Applications including aviation, energy, and severe weather forecasting.

Configuration:
- 13 km horizontal North American grid
- Twice daily *partial cycles* from GFS atmospheric fields
- Hourly *continue cycled* land-surface fields

Model:
- WRF-ARW dynamic core

Data Assimilation:
- GSI 3D-VAR/GFS-ensemble hybrid *data assimilation*
- GSI non-variational cloud/precipitation hydrometeor (HM) analysis
- Diabatic Digital Filter Initialization (DDFI) using hourly radar reflectivity observation

Timeline:
- RAP version 1 operational implementation: 01 May 2012
- RAP version 2 operational implementation: 24 February 2014
- **HRRR v1** is planned to operational implementation in **September 2014**
RAPv2 Data Assimilation

GFS EnKF 80-member ensemble
Available four times per day
valid at 03z, 09z, 15z, 21z

80-member GFS EnKF
Ensemble forecast valid at
15Z (9-hr fcst from 6Z)
RAP GSI 3DVar/Ensemble hybrid

• RAPv2 hybrid configurations:
 o With half Ensemble BE and half Static BE
 o Ensemble grid is 3 times coarser than background grid
 o Analysis grid is 2 times coarser than background grid
 o Ensemble forecasts are available every 6-hour
 o Horizontal localization scale is 110 km
 o Vertical localization scale is 3 grid levels
 o No vertical changes in localization scale

• Baseline retrospective tests
 o May 28th to June 4th, 2012
 o Only difference are analysis: 3DVar versus Hybrid
RAPv2 baseline test results

RMSE Vertical Profiles: Soundings from 1000-100 mb

- **RAP Hybrid**
- **RAP No Hybrid (3D-VAR)**

Upper Air RMS Vertical Profile for 6 hour forecast

Upper Air RMS Time Series for 6 hour forecast

Consistent improved upper-air environment

Little impact to the ceiling forecast, surface forecast, precip forecast
Tuning for RAPv2 implementation

• GFS/EnKF Ensemble forecast resolution used in the RAP GSI
 GSI Hybrid using Ensemble grid that is 1X or 3X coarser than background grid

• GFS EnKF ensemble forecast available frequency
 GSI hybrid using ensemble forecast available hourly versus 6-hourly
Ensemble Resolution Test

RMSE Vertical Profiles: Soundings from 1000-100 mb

- **Hybrid, Ensemble grid is 3X coarser than background grid**
- **Hybrid, Ensemble grid is background grid**

Upper Air RMS Vertical Profile for 6 hour forecast

Summary: The GSI hybrid DA using **coarser** ensemble grid data produces the same quality forecast as one using ensemble grid same as original background grid.
GFS EnKF Ensemble forecast available frequency

Upper Air RMS Vertical Profile for 3 hour forecast

Upper Air RMS Vertical Profile for 6 hour forecast

Red - Hybrid with 6-hourly GFS/EnKF ensemble Forecast
Blue - Hybrid with hourly GFS/EnKF ensemble Forecast
Further tests based on RAPv2

- Ensemble BE and Static BE ratio
 GSI Hybrid with 50%, 75%, and 100% Ensemble BE

- Horizontal localization scale
 GSI hybrid with horizontal localization scale set to 110 km, 160 km, 220 km, and 330 km

- Vertical localization scale
 GSI hybrid with vertical localization scale set to 3 levels, 9 levels, and -0.15 (about 100 hPa)
Ratio of Ensemble and Static BE

3h forecast - Upper Air RMS error - Vertical Profile

- Red - Hybrid with 50% Ensemble BE and 50% Static BE
- Blue - Hybrid with 75% Ensemble BE and 25% Static BE
- Black - Hybrid with 100% Ensemble BE and 0% Static BE

6h forecast - Upper Air RMS error - Vertical Profile

Wind

RH

T

Red - Hybrid with 50% Ensemble BE and 50% Static BE
Blue - Hybrid with 75% Ensemble BE and 25% Static BE
Black - Hybrid with 100% Ensemble BE and 0% Static BE
Horizontal Localization Tests – Single T obs

Temperature analysis increments:

- Horizontal cross section
- Single temperature observation at 500 hPa
- Hybrid with 50% ensemble BE and 50% static BE
- Vertical localization scale is 3 levels
Horizontal Localization Test Results

6h Forecast - Upper Air RMS Error - Vertical Profile

- **Red** - Hybrid with $s_{ens_h}=110$ km
- **Blue** - Hybrid with $s_{ens_h}=160$ km
- **Orange** - Hybrid with $s_{ens_h}=220$ km
- **Black** - Hybrid with $s_{ens_h}=330$ km

12h Forecast - Upper Air RMS Error - Vertical Profile

- **Wind**
- **RH**
- **T**
Vertical Localization Test – Single obs

Single T obs at 500 hPa

Single T obs at 1000 hPa

Temperature analysis increments:
- Vertical cross section
- Hybrid with 75% ensemble BE and 25% static BE
- Horizontal localization scale is 330 km
Vertical Localization Test Results

0h forecast (analysis) - Upper Air RMS fit to raobs - Vertical Profile

- **Red** - hybrid with vertical localization scale = 3
- **Blue** - hybrid with vertical localization scale = 9

6h forecast - Upper Air RMS error Vertical Profile

- **Red** - hybrid with vertical localization scale = 3
- **Blue** - hybrid with vertical localization scale = 9
Vertical Localization Test results

0h forecast (analysis) - Upper Air RMS fit to raobs - Vertical Profile

6h forecast - Upper Air RMS error Vertical Profile

Red - hybrid with vertical localization scale = 3
Blue - hybrid with vertical localization scale = -0.15
Evaluate Flow-dependent contributions

• The consistent improved upper-air forecast of applying GSI-hybrid are coming from the follow-dependence features in BE induced through real-time ensemble

• How much contributions from the follow dependence?

• New retro experiment: June 15-22, 2014
 – GSI-hybrid with 2014 RAP configuration
 – Control: Use 6-hourly available GFS ensemble
 – Constant ensemble: Use a single set of the ensemble on June 15, 2014 for all cycles.
Evaluate Flow-dependent contributions

Upper Air RMSE Vertical Profiles:
6 h forecast error from 1000-100 mb

<table>
<thead>
<tr>
<th></th>
<th>2012 retro</th>
<th>GSI Hybrid</th>
<th>GSI 3DVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2014 retro
- RAP 2014 with constant ensemble
- RAP 2014

Hybrid DA: Consistent Improved upper-air forecasts
little impact to the ceiling forecast, surface forecast, precip forecast
Evaluate Flow-dependent contributions

RMSE Vertical Profiles: Errors from 1000-100 mb in 2014 Retro

- RAP 2014 with constant ensemble
- RAP 2014

3h forecast - Upper Air RMS error – Time Series

6h forecast - Upper Air RMS error – Time Series

Flow dependent: Consistent Improved upper-air forecasts
But better BE definition from correct ensemble fcsts also contributes
Summary

• The RAP GSI 3DVar-Ensemble hybrid improved mid-to upper-tropospheric wind and moisture forecasts up to 12-h duration

• The RAP GSI hybrid with ensemble forecast valid at each hourly analysis time gives a very slight benefit over one with 6h available ensemble forecast. Constant ensemble (not correct in time) still can improve forecasts.

• 75% Ensemble BE in hybrid assimilation can further consistent improve wind and RH forecast over 50/50, but results for 100% Ensemble BE are mixed

• Localization scales set to 110 horizontal and 3 levels vertical give the best short-term (0-9h) forecasts

• Current GFS EnKF ensemble BE mainly improves larger scale features of the RAP forecast
Future Work

- **Need Regional Ensemble forecast BE:**
 - Increase spread in low levels to improve surface data assimilation
 - Create covariances for multi-species hydrometeor fields to improve cloud and storm assimilation

- **Near future:**
 - Conduct regional ensemble forecasts initialized from GFS/EnKF ensemble forecasts
 - Build and test RAP EnKF/Ensemble forecast system

- **Build and test North American Rapid Refresh Ensemble (NARRE) by 2016, co-development between ESRL and NCEP/EMC**