Idealized LES of a TC-like boundary layer...

and WRF-LES of Hurricane Katrina (2005)

Benjamin W. Green
Penn State University
Special thanks to: Fuqing Zhang (PSU)
Peter Sullivan, George Bryan, Richard Rotunno (NCAR)
Tropical Cyclone Boundary Layer (TCBL)

• Emanuel’s PI theory: TC is like Carnot engine
 – Enthalpy input from warm oceans (C_k)
 – Momentum lost to ocean surface (C_D)

• Why is TCBL so important?
 1. BL communicates information between surface layer and free atmosphere: impacts TC intensity and structure (and thus predictability)
 2. We live in boundary layer: want to know about mean wind and turbulent gusts

Emanuel (1986; 1995a,b)
Part 1: Idealized Large Eddy Simulation of TCBL

• What is the simplest configuration of LES that can represent key features of a TCBL?
• According to Nakanishi and Niino (2012):
 – Periodic lateral boundary conditions
 – Incompressible barotropic flow with extreme winds (35 m s\(^{-1}\)) forced by constant horizontal PGF
 – Some representation of centrifugal force (v/R)
 – No surface heat flux, clouds, or radiation
• But is this too simple?
Consequences of NN12 LES configuration

• Periodic LBCs + constant horizontal PGF: **effectively simulates turbulent statistics** at a single vertical column

• Simulation of single column w/ periodic LBCs:
 – Fixed radius from TC center can represent centrifugal force \((V/R)\) **in Cartesian coordinates**
 – Surface heat flux = 0
 – Incompressible: no mean vertical velocity (becomes important close to TC eyewall)
Problem with NN12 LES setup

• NN12 represent centrifugal force as v/R
 – Yields barotropic instability (their Appendix A)
 – Their workaround: change v/R to <v>/R
 (\(<v>\) = horizontal average v at each vertical level)

• To make a 3-month-long story short:
 – Unphysical barotropic instability introduced by improper “small angle” approximation in conversion from cylindrical to Cartesian coordinates
 – Our solution: Change reference frame to rotate with TC – replace Coriolis parameter f with “effective” Coriolis: \(f^* = f + 2V_g/R \)
LES momentum equations

- Coded in Cartesian coordinates (R is constant)

\[
\begin{align*}
\frac{Du}{Dt} &= -\frac{1}{\rho} \frac{\partial p}{\partial x} + f^* (v - V_g) - \frac{\partial \tau_{x,j}}{\partial x_j} \\
\frac{Dv}{Dt} &= -\frac{1}{\rho} \frac{\partial p}{\partial y} - f^* u - \frac{\partial \tau_{y,j}}{\partial x_j}
\end{align*}
\]

\[f^* = f + 2 V_g / R\]
Our idealized LES setup

• NCAR LES

• Properties unchanged between LES runs:
 – Incompressible, periodic LBCs, constant V_g
 – Grid mesh: $\Delta x = \Delta y = \Delta z = 40$ m
 – Domain size: $(L_x, L_y, L_z) = (20$ km, 20 km, 4 km)
 (500x500x100 grid points)
 – Time: 40,000 sec (11.11 hr); $\Delta t = 0.1$ sec
 – Dry, no radiation, no surface heat flux
 – Initial θ profile: $\theta = 300$ K at sfc, $d\theta/dz = 4$ K km$^{-1}$
Configuration of different LES runs

- Default (CNTL) LES: $R = 60$ km, $V_g = 35$ m s\(^{-1}\), C_D (via z_0) follows Donelan et al. (2004)

- Test sensitivity to...
 - f^* (via R): $R = 30, 60, 120$ km [R30, CNTL, R120]
 - V_g: $V_g = 17.5, 35, 70$ m s\(^{-1}\) [V17.5, CNTL, V70]
 - Surface drag (via z_0) at $V_g = 70$ m s\(^{-1}\):
 - C_D is flat above 33 m s\(^{-1}\) (Donelan et al. 2004) [V70]
 - C_D increases monotonically w/ wind [Charnock70]
 - $z_0 = 0.1$ m (strong friction over land) [Land70]
\[v' = v - \langle v \rangle \text{ (m s}^{-1}\text{)} \text{ at } z = 100 \text{ m} \]
Normalized profiles of mean K_m

- $K_m = \text{vertical component of eddy viscosity}$
 - Solid: Resolved-scale
 - Dashed: Subgrid-scale
- All runs (except V17.5) are clearly in LES range
- Normalized K_m increases with R (decreases with f^*)
- Normalized K_m curves collapse for fixed R and $V_g \geq 35 \text{ m s}^{-1}$

Averaged over last 3 h of each run
Normalized profiles of mean v

- \(\langle v \rangle / V_g > 1 \) is characteristic of all rotating (Ekman) flows
- Invites comparison with linear theory of Kepert (2001, K01)
 - Areas of agreement:
 - Increased \(R \) (decreased \(f^* \)) = higher, stronger overshooting jet
 - Increased \(C_D \) = higher, stronger jet
 - Weak jet: LES and K01 neglect vertical advection of \(u \) (Kepert and Wang 2001)
 - Areas of disagreement (due to \(K_m \)):
 - Increased \(V_g \) = higher, weaker jet

Averaged over last 3 h of each run
Conclusions (Idealized LES)

- Incompressible Cartesian LES w/ periodic LBCs severely constrains modeling TCBL
 - Change f to f^* (to account for TC’s rotation)
 - Neglect mean vertical advection
 - Result: Ekman layer with extremely fast rotation, can be compared with linear analytic model of Kepert (2001)

- LES agrees with K01 linear model, except when nonlinear effects of K_m overwhelm and counteract effects of V_g
Part 2: WRF-LES of Hurricane Katrina (2005)

• Limitations of Part 1 motivate new approach
• Use WRF model to nest down from mesoscale
 – Non-periodic LBCs
 – Compressibility
 – Moist physics and radiation
• Problems: High computational/memory requirements
 – Short integration time (4-6 hours)
 – Infrequent output (every 1 hour)
 – Coarser grid mesh (1/3 km, 1/5 km, 1/9 km)
Experimental setup

• Run WRF simulations of Hurricane Katrina (Aug. 05)
 – Spinup: EnKF assimilation of airborne Doppler velocities
 – Deterministic run from 00Z/26 to 12Z/28 with $\Delta x = 3 \text{ km}$

• Integrate until 18Z/28 using following 1-way nested, fixed meshes:
 – $\Delta x = 1 \text{ km}$ (YSU and MYNN PBL schemes)
 • $\Delta x = 333 \text{ m}$ (YSU PBL scheme and no PBL scheme)
 – At 14Z, nest down to $\Delta x = 111 \text{ m}$ (no PBL scheme)
 • $\Delta x = 200 \text{ m}$ (no PBL scheme)
Simulated visible satellite (SWDOWN field), valid 18Z/28 for 111 m simulation
Preliminary results: Katrina LES

Diagnosed SGS fluxes from nonlinear backscatter and anisotropy (NBA) scheme

Finer mesh = weaker, more shallow SGS fluxes (good)
Preliminary results: Katrina LES

- Plots of 10-m wind speed at 18Z/28
- PBL scheme appears to discourage very strong local wind maxima
- Polygonal eyewalls
- Compare with Fig. 2 of Rotunno et al. (2009)
Preliminary conclusions (Katrina LES)

• Δx between 100 m and 1 km give very different results
 – $\Delta x = 333$ m appears to be in “gray zone” or “terra incognita” for LES
 – $\Delta x = 111$ m is much more acceptable for TC LES
 – May be necessary to nest a LES mesh inside a “gray zone” mesh: don’t use gray zone only!

• LES of real TC cases is not quite ready yet for “prime time” – much more testing needed (see next slide)
What needs to be done going forward?

• For idealized LES of TCBL
 – Look at turbulence structure & higher-order moments
 – Add surface heat flux w/ strong capping inversion
 – Use compressible, non-periodic LBC LES
 – Heterogeneous surface drag: coastline

• For LES of TCs: Testing with quasi-idealized vortex
 – Various subgrid-scale parameterizations
 – 1-way vs. 2-way nesting
 – Size of < 1 km meshes (absolute, and relative to size of TC vortex)
 – Longer integration time: how is practical predictability limited?
References

Extra/Backup slides
Normalized profiles of mean u

- \(\langle u \rangle / V_g < 0 \) is characteristic of all rotating (Ekman) flows
- Compare with K01 linear theory
 - Areas of agreement:
 - Increased \(R \) (decreased \(f^* \)) = deeper inflow layer
 - Increased \(C_D \) = deeper inflow layer
 - Areas of disagreement (due to \(K_m \)):
 - Increased \(V_g \) = deeper inflow layer

Averaged over last 3 h of each run
Compare with Rotunno et al. (2009)

Rotunno et al. (2009)
- Two-way nesting
- 50 vertical levels
- Idealized vortex
- Sizes of sub-km meshes:
 - 556 m: 333 km x 333 km
 - 185 m: 111 km x 111 km
 - 62 m: 37 km x 37 km

Present work
- One-way nesting
- 83 vertical levels
- Hurricane Katrina
- Sizes of sub-km meshes:
 - 333 m: 816 km x 816 km
 - 200 m: 471 km x 471 km
 - 111 m: 278 km x 278 km
• Simulated IR (OLR field), valid 18Z/28 for 200 m simulation
Background: Boundary layer modeling

1. Mesoscale simulations
 – Parameterize all BL turbulence

2. Large Eddy Simulation (LES)
 – Explicitly resolve energy-containing eddies
 – Parameterize small dissipative eddies

3. Direct Numerical Simulation (DNS)
 – Resolve all turbulence (way too expensive)
Tropical Cyclone Boundary Layer (TCBL)

• Emanuel’s potential intensity theory: TCs are like Carnot engines
 – Enthalpy input from warm oceans (C_k)
 – Momentum lost to ocean surface (C_D)

• BL communicates information between surface layer and free atmosphere

Emanuel (1986; 1995a,b)
Why is TCBL so important?

1. Impacts TC intensity/structure (and thus predictability)

2. We live in the boundary layer... want to know about mean wind and turbulent gusts
Results: Time series of u_*

- Adjustment oscillation has period very close to $2\pi/f^*$ (inertial period)
- u_* increases slightly with f^* (decreases slightly with R)
- u_* impacted much more by V_g and surface drag (increased V_g, $C_D = \text{increased } u_*$) – no surprise
Background

• Emanuel’s potential intensity theory for TCs

\[
V_{\text{max}}^2 = \frac{C_k}{C_D} \left(\frac{1 - 0.25r_0^2}{1 - \gamma \frac{C_k}{2C_D}} \right)
\]

\[
P_{\text{min}} \approx - \frac{V_{\text{max}}^2 (1 - 0.5AH) - 0.25r_0^2}{1 - AH}
\]

• Increase \(C_k \) and/or decrease \(C_D \) = stronger TC (faster winds and deeper central pressure)

• Problem: uncertainty/error in \(C_k \) and \(C_D \) parameterizations = error in TC forecasts

Emanuel (1986; 1995a,b)
C_D and C_k in an atmosphere-only model

- In similarity theory, C_k is a function of C_D (scalar flux proportional to momentum flux)
 \[-\tau/\rho = u_* \times u_* = C_D U(\Delta U) = u_* \times C_D^{1/2} U\]
 \[-H/(c_p \rho) = u_* \times \theta_* = C_k U(\Delta \theta) = \theta_* \times C_D^{1/2} U\]
 \[-E/(L_v \rho) = u_* \times q_* = C_k U(\Delta q) = q_* \times C_D^{1/2} U\]

- This means α, V_c, and m also impact C_k!
Hot off the supercomputer! LES of Katrina

• Max. V_{10} extremely sensitive to C_D formula
 – Donelan C_D: 98 m s$^{-1}$
 – Charnock C_D: 77 m s$^{-1}$

• Horizontal grid:
 – Spacing = 333 meters
 – Size: 816 km x 816 km
 (2448 x 2448 points)

• 85 vertical levels
• Run for 6 hours
Future work

• Move to Very Large Eddy Simulation (VLES)
 – The new “gold standard” of TC simulations
 – How does turning off PBL scheme impact results?

• Test C_D independent of C_k (Smith et al. 2012)
 – Goes against similarity theory and WRF
 – But can shed more light on problem

• Incorporate parameter estimation into Penn State’s WRF-EnKF system
 – Especially for α, the multiplicative parameter in C_D
 – Requires more near-surface observations