Hans-Ertel-Centre for Weather Research
Climate Monitoring and Diagnostics

A high-resolution reanalysis
for the European CORDEX region

Jan Keller¹,², Christian Ohlwein¹,³, Christoph Bollmeyer¹,³, Sabrina Bentzion¹,³, Andreas Hense³, Petra Friederichs¹, Susanne Crewell⁴

¹ Hans-Ertel-Centre for Weather Research, Climate Monitoring Branch, Germany
² Deutscher Wetterdienst, Offenbach, Germany
³ Meteorological Institute, University of Bonn, Germany
⁴ Institute for Geophysics und Meteorology, University of Cologne, Germany

contact: jan.keller@dwd.de

16-21 August 2014 – WWSC Montreal, Canada
Motivation

- Global reanalyses are established as reference data sets
 - Used in many applications
 - Consistent representation of the atmospheric state
 - spatio-temporally
 - physically, inter-parameter

- More and more applications need data at high spatio-temporal resolutions
 - E.g., assess climate and its variability on regional and local scales

→ Regional reanalysis for Europe
Reanalysis model setup

- COSMO model
 - Operational NWP model in
 Germany, Greece, Poland, Romania, Russia and Switzerland
 - Non-hydrostatic, rotated LatLon grid
 - Multi-layer soil and vegetation model TERRA

- Model setup
 - 6km horizontal resolution (2x horizontal resolution of CORDEX-EUR11)
 - 848 x 824 grid points in the horizontal
 - 40 vertical levels
Reanalysis domain

- CORDEX-EUR11 domain
Regional Reanalysis System

<table>
<thead>
<tr>
<th>00</th>
<th>03</th>
<th>06</th>
<th>09</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERA-Interim reanalysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSMO-REA6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous nudging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous nudging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous nudging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous nudging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snow analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST / Sea ice analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST / Sea ice analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil moisture analysis (SMA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil moisture analysis (SMA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High-resolution regional reanalysis, WWOFS, Montreal, 16-21 August 2014

SYNOP, SHIP, PILOT, TEMP, AIREP, AMDAR, ACARS,…
Reanalysis output

- 3D atmospheric state - 60 minutes interval
 - U, V, W, T, QV, QC, QI, QS, QR, TKE, QH

- 2D parameters - 15 minutes interval
 - sfc / 2m / 10m variables (also max/min, 850 mb)
 - Column integrated values (e.g., TCLC, TDLT)
 - Soil variables
 - Fluxes, radiation

High-resolution regional reanalysis, WWO3C, Montreal, 16-21 August 2014
Reanalysis output

- 3D atmospheric state - 60 minutes interval
 - U, V, W, T, QV, QC, QI, QS, QR, TKE, CLC, DQVDT

- 2D parameters - 15 minutes interval
 - sfc / 2m / 10m variables (also max/min, gusts)
 - Column integrated values (e.g., TCLC, TQV)
 - Soil variables
 - Fluxes, radiation

- approx. 40GB per reanalysis day, 14TB per reanalysis year

- Distribution through ECMWF’s MARS archive in preparation
Reanalysis production

- 2 production streams running
 - Estimated to be finished by end of fall

- 1 stream in preparation for 1979-1984

- Intended coverage of final reanalysis: 35 years by end of 2015
Evaluation - Precipitation

High-resolution regional reanalysis, WWOSC, Montreal, 16-21 August 2014

DAS? Koeppen geiger
Evaluation - Precipitation

Bias from contingency table for 6-hourly precipitation

\[
BIAS = \frac{H + FA}{H + M}
\]

COSMO-REA6
Threshold 0.10 mm/6h

ERA-INTERIM

<table>
<thead>
<tr>
<th>REA \ Obs</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Hits</td>
<td>False Alarms</td>
</tr>
<tr>
<td>no</td>
<td>Misses</td>
<td>Cor. neg.</td>
</tr>
</tbody>
</table>

High-resolution regional reanalysis, WWRFC, Montreal, 16-21 August 2014
Evaluation - Precipitation

Bias from contingency table for 6-hourly precipitation

\[
\text{BIAS} = \frac{H + FA}{H + M}
\]

<table>
<thead>
<tr>
<th>REA \ Obs</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Hits</td>
<td>False Alarms</td>
</tr>
<tr>
<td>no</td>
<td>Misses</td>
<td>Cor. neg.</td>
</tr>
</tbody>
</table>

High-resolution regional reanalysis, VWOSC, Montreal, 16-21 August 2014
Evaluation - Precipitation

Bias from contingency table for 6-hourly precipitation

<table>
<thead>
<tr>
<th>REA \ Obs</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Hits</td>
<td>False Alarms</td>
</tr>
<tr>
<td>no</td>
<td>Misses</td>
<td>Cor. neg.</td>
</tr>
</tbody>
</table>

BIAS = \frac{H + FA}{H + M}
Evaluation - Precipitation

Bias from contingency table for 6-hourly precipitation

<table>
<thead>
<tr>
<th>REA \ Obs</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Hits</td>
<td>False Alarms</td>
</tr>
<tr>
<td>no</td>
<td>Misses</td>
<td>Cor. neg.</td>
</tr>
</tbody>
</table>

\[
BIAS = \frac{H + FA}{H + M}
\]
Evaluation - Precipitation

Bias from contingency table for 6-hourly precipitation

<table>
<thead>
<tr>
<th>REA \ Obs</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Hits</td>
<td>False Alarms</td>
</tr>
<tr>
<td>no</td>
<td>Misses</td>
<td>Cor. neg.</td>
</tr>
</tbody>
</table>

\[
BIAS = \frac{H + FA}{H + M}
\]
Evaluation - Precipitation

Bias from contingency table for 6-hourly precipitation

<table>
<thead>
<tr>
<th>REA \ Obs</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Hits</td>
<td>False Alarms</td>
</tr>
<tr>
<td>no</td>
<td>Misses</td>
<td>Cor. neg.</td>
</tr>
</tbody>
</table>

\[
BIAS = \frac{H + FA}{H + M}
\]
SYNOP, SHIP, PILOT, TEMP, AIREP, AMDAR, ACARS,...
SYNOP, SHIP, PILOT, TEMP, AIREP, AMDAR, ACARS,...
Evaluation - Pure Downscaling

High-resolution regional reanalysis, WWOSC, Montreal, 16-21 August 2014

DAS? Koeppen geiger
Evaluation - Pure Downscaling

Bias from contingency table
for 6-hourly precipitation
Threshold 1mm

<table>
<thead>
<tr>
<th>REA \ Obs</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Hits</td>
<td>False Alarms</td>
</tr>
<tr>
<td>no</td>
<td>Misses</td>
<td>Cor. neg.</td>
</tr>
</tbody>
</table>

\[
\text{BIAS} = \frac{H + FA}{H + M}
\]
Evaluation - Pure Downscaling

High-resolution regional reanalysis, WMO/CC, Montreal, 16-21 August 2014
Evaluation - Pure Downscaling

Log-Odds ratio for 3-hourly precipitation
Threshold 1mm

\[LOR = \frac{H \cdot CN}{FA \cdot M} \]

<table>
<thead>
<tr>
<th>REA \ Obs</th>
<th>yes</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Hits</td>
<td>False Alarms</td>
</tr>
<tr>
<td>no</td>
<td>Misses</td>
<td>Cor. neg.</td>
</tr>
</tbody>
</table>
DAS? Koeppen geiger
Evaluation - Temperature

DAS? Koeppen geiger
Evaluation

- Further evaluation using independent observations
 - Integrated water vapor
 - Spatial cloud structure (MSG)
 - Cloud ceiling
 - Spatial distribution of precipitation
Applications

- Climate monitoring on regional and local scales
- Climate change detection
- Risk assessment
- Reference for forecast verification
- Energy production / usage
- Agro-meteorology
- Boundary conditions for downstream simulations, e.g. higher resolution runs, hydrological and land-surface models
Conclusions

- A high resolution reanalysis using COSMO in production
 (8 years of data available, more to come soon)
- Large variety of parameters available
- Evaluation shows added value compared to ERA-Interim
 and gridded data sets

 Bollmeye et al., QJRMS, in revision

Future plans

- Framework for the evaluation of (regional) reanalysis
- Regional ensemble reanalysis (FP7 funded project UERRA)
- Investigate higher resolution (convection permitting)
Hans-Ertel-Centre for Weather Research
Climate Monitoring and Diagnostics

A high-resolution reanalysis
for the European CORDEX region

Jan Keller1,2, Christian Ohlwein1,3, Christoph Bollmeyer1,3, Sabrina Bentzien1,3, Andreas Hense3, Petra Friederichs3, Susanne Crewell4

1 Hans-Ertel-Centre for Weather Research, Climate Monitoring Branch, Germany
2 Deutscher Wetterdienst, Offenbach, Germany
3 Meteorological Institute, University of Bonn, Germany
4 Institute for Geophysics und Meteorology, University of Cologne, Germany

contact: jan.keller@dwd.de

16-21 August 2014 – WWOSC Montreal, Canada