Using adjoint sensitivity to control discretization errors: Goal-oriented adaptivity for idealized tropical cyclone scenarios

Martin Baumann, Vincent Heuveline
Engineering Mathematics and Computing Lab (EMCL) Universität Heidelberg

Leonhard Scheck
Institut für Meteorologie und Klimaforschung (IMK) Karlsruher Institut für Technologie
Current affiliation: HErZ, LMU Munich

Sarah Jones
Deutscher Wetterdienst (DWD) Offenbach
Motivation

- Forecasting development and motion of TCs: severe challenge for NWP
- Interacting processes on a large range of scales (< 1km … 10,000km)
- Multiscale modelling necessary, but expensive → grid adaptation
- Common approach: Grid nesting (how deep? may miss sensitive regions…)
- Goal-oriented adaptivity: promising approach for automatic grid adaptation
Goal-oriented Error Estimation

Idea: Given a quantity of interest (goal functional) J, adapt the grid in a way that minimizes the error in J (e.g. under the constraint that the computational effort is constant).

Realisation: For each cell, estimate contribution to error in J using an a posteriori error estimator. Increase resolution where error is large.

A posteriori error estimator: $|J(u) - J(u_h)| \approx E(u_h) \leq \sum_{K \in T_h} \eta_K$ with $\eta_K \geq 0$

Start from coarse grid, iterate until total error sufficiently small...
Linear sensitivity analysis

- Adaptation requires information about future impact of discretization errors

Assume \(J(y) \) depends on state \(y = u(t_2) \)

Impact of discretization errors at \(t_1 (< t_2) \):

\[
\delta J = \langle \partial_y J, \delta y \rangle = \langle \partial_y J, L \delta x \rangle = \langle L^T \partial_y J, \delta x \rangle
\]

adjoint sensitivity = dual solution

Discretization error can be estimated in finite element codes: higher order – lower order solution

with \(x = u(t_1) \), tangent linear model \(L \) and adjoint model \(L^T \)

→ A well-known but often hard to interpret quantity measuring sensitivity is generated during the grid adaptation process.

- Adjoint sensitivity can also be interpreted as optimal perturbation
- Idealised models: Clearer view on selected perturbation growth processes, better suited to test automatic grid adaptation than full-physics 3D models
Test case: TC-TC Interaction

- Influences motion (Fujiwara) and structure (shear)
- Occurs ~2-3 times per year, often associated with low predictability
- Idealised, **nondivergent-barotropic** case: TC-like vortices on f-plane
- **High sensitivity** to initial TC separation (extreme case: bifurcation between merger and non-merger cases) and numerical errors

Vorticity evolution for initial TC separations 370km (top) and 400km (bottom) in the first 48 hours.
Adaptive Simulation

Goal functional $J = \int_{\text{core of left vortex}} \zeta(96h, x, y) \, dx \, dy$, static grid
Adaptive Simulation

Goal functional $J = \int_{\text{core of left vortex}} \zeta(96h, x, y) \, dx \, dy$, static grid
Adaptive Simulation

Goal functional \(J = \int_{\text{core of left vortex}} \zeta(96h, x, y) \, dx \, dy \), static grid

Vorticity

Dual velocity
Adaptive Simulation

Goal functional $J = \int_{\text{core of left vortex}} \zeta(96h, x, y) \, dx \, dy$, static grid

Vorticity

Dual velocity
Adaptive Simulation

Goal functional \(J = \int_{\text{core of left vortex}} \zeta(96\,h, x, y) \, dx \, dy \), static grid
Adaptive Simulation

Goal functional $J = \int_{\text{core of left vortex}} \zeta(96h, x, y) \, dx \, dy$, static grid
• Adaptation → Reduction of error in goal functional and cyclone position

• #DoFs required to get correct type of solution (non-merging):
 20,000 on adaptive grid, 80,000 on uniform grid
Adaptation in time

Temporal error indicators

Position error [km]

- Error indicators allow for an optimization of the time partitioning
- Reduction of position error by one order of magnitude

goal-oriented adaptation → highly efficient meshes in space and time
Dual solution vs. Adjoint sensitivity vs. Singular Vectors

\[J = \int_{|v|>0.9 \max(|v|)} |v|^2 \, dA \]

\[J = \int_{\zeta>0.5 \max(\zeta)} \zeta \, dA \]

Leading singular vector (energy norm)
Initial and Evolved Optimal Perturbations

Initial perturbation \((L^T \partial_y J)\)

Elongated structures aligned with separatrices in corotating frame

Evolved perturbation \((LL^T \partial_y J)\)

Vorticity dipoles → perturbations cause displacement of the TCs

Initial perturbation grows by Orr effects (untilting & unshielding) and accumulates near stagnation points, associated velocity field causes a displacement of the vortices.
Initial sensitivity structure

interacting vortices

vortices in horizontal shear

+ rotation
(transforming into corotating frame = subtraction of vorticity → anticyclones)

see Poster 55394 - “Singular vectors for idealised TC scenarios: Structure and perturbation growth mechanisms”
TC-Interaction in 3D

- Vertical shear caused by first vortex tilts second (and vice versa)
- Tilted vortices precess and modify TC motion → not only initial separation, but also stability and strength of coriolis force determine the outcome of the interaction
- Abrupt changes in TC motion at certain precession angles

Vorticity evolution for the same initial TC separations but f-values corresponding to different latitudes.
Dual solution for 3D case

Work in progress...

First results:

- 3D dual vorticity is aligned with 2D separatrix near ground
- Change of sign with height indicates that not only displacement but also tilting of the vortices plays a role

View from SW / above

View from top
Conclusion

• Goal-oriented adaptivity: automatic grid adaptation in space and time for multiscale problems like tropical cyclone forecasts → highly efficient grids
• Ability to detect remote sensitive regions could justify increased effort for the grid adaptation, compared to simpler refinement approaches
• Generated during grid adaptation: dual solution = adjoint sensitivity
• Idealised scenarios: Interpretation of sensitivity structure and understanding perturbation growth mechanisms is much easier
• Flow boundaries are preferred location for perturbation growth in 2D → could also be important in full-physics 3D case

Publications
• Bauer, Baumann, Scheck, Gassmann, Heuveline, Jones: Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity, 2014, TCFD, 28, 1, 107-128
• Baumann, Heuveline, Scheck & Jones: Goal-Oriented Adaptivity for Idealised Tropical Cyclones: A Binary Interaction Scenario, submitted to Meteorologische Zeitschrift