PAGE
36
ET/DR&C2/Doc. 6(1), p.

WORLD METEOROLOGICAL ORGANIZATION

COMMISSION FOR BASIC SYSTEMS

MEETING OF EXPERT TEAM ON DATA REPRESENTATION AND CODES

PRAGUE, CZECH REPUBLIC, 22-26 APRIL 2002

ET/DR&C2/Doc. 6(1)

(27.II.2002)

ENGLISH only

METEOROLOGICAL DATA AND XML

(Submitted by Charles Sanders, Australia)

__

Summary and Purpose of Document
XML (eXtensible Markup Language) is a standard for communicating structured data. Use of XML is rapidly expanding, but WMO has not as yet taken a leading role in developing XML standards for meteorological information. The document analyze the present use of XML in Meteorology and try to propose options for WMO actions with a view to recommend a WMO standard for the exchange of data and metadata in XML.

__

ACTION PROPOSED
The Meeting will examine the document on the use of XML to exchange meteorological information. The Meeting will discuss possible requirements and benefits. It may derive the appropriate statements for standardization and make recommendations on the practical use of XML in the framework of WMO programmes.

Appendices:

1)
Introduction to XML;

2)
OMF;

3)
FishOnline;

4)
Tree-table-XML;

5)
Example of XML from MEDS;

6)
A possible translation from BUFR to CREX to Tree-table-XML;

7)
Examples of possible XML file structures.

Meteorological Data and XML

(Mal Gorman, James Kelly, Chris Ryan and Charles Sanders)

1. Executive Summary

XML (eXtensible Markup Language) is a standard for communicating structured data. Use of XML is rapidly expanding, but WMO has not as yet taken a leading role in developing XML standards for meteorological information. With the notable exception of the US Navy, the use of XML in meteorological operations has been fairly limited.

If WMO does not take action in the near future to recommend a standard or standards, there is a risk that several competing and incompatible “standards” will be developed. There are a great many options, ranging from doing nothing and leaving it up to individual meteorological services to make their own decisions, through to attempting to devise a WMO standard for the exchange of data and metadata in XML.

If WMO does take a lead in developing a Meteorological standard for XML, there are many options. The possibilities range from generic XML standards that treat most (or all) of the metadata as data, to much more specific standards that specify exactly what metadata is permitted. It is not always clear what is data and what is metadata, and the amount and range of possible metadata is very large. There are also issues of language (English only, multiple languages, a specialist language) and design to be resolved. Some data (eg station dictionaries) change slowly, while others are much more volatile, so different approaches may be needed.

If a meteorological XML standard is correctly defined, it should be possible to ensure compatibility with and produce automatic translators between standard WMO codes (such as CREX or BUFR data or GRIB metadata) and XML.

WMO data can be split into two broad types, namely slowly changing data such as station dictionaries, codes manuals, and bulletin catalogues, and more volatile data such as observations and forecasts. Different approaches may be needed for these different areas.

2. Introduction

Traditionally weather data has been exchanged in telegraphic formats, designed for low speed, data communication lines. Information about the data (the “metadata”) has not been transmitted. It has been assumed that the recipient understands the abbreviated message format, and has access to any metadata needed to determine the meaning of the data.

XML is designed for the “internet” world where the bandwidth of the transmission line is less of an issue, and the aim is to make the message as self-contained as possible. XML contains “information about the data” (metadata) as well as the data itself. XML is flexible, extensible, well suited to weather data, and worthy of WMO attention as an exchange format.

XML has the potential to greatly simplify the exchange of data and metadata between the meteorological community and users of meteorological data, and also to a lesser extent within the meteorological community. Standard, freely available software, such as newer web browsers, can be used to display limited amounts of XML data clearly and simply. More complex software can be used to search XML data files for particular items of information, and to process these in various ways.

XML is really a meta-language. An XML schema, or a Document Type Definition, is used to define an XML “vocabulary” for use in a particular subject area, or for a particular purpose. This permits checking the XML for conformance to a pre-defined standard. A more detailed introduction to XML and XML processing is provided in Appendix 1.

3. Strategic Options for WMO

The various WMO committees involved will have to make a number of strategic decisions in the near future. The decisions involved include:

· The broad, overall policy on whether to follow the crowd, or to be a lead player in the development of XML.

· Whether to adopt an English-based XML vocabulary, or try to develop a more “international” standard.

· Whether to develop a small set of general-purpose XML schemas, or a larger set of more specialized schemas.

· Whether to create or adopt a very rigid XML standard, or to opt for a more generalized and flexible standard.

Any WMO defined standard for the use of XML in meteorology is unlikely to meet all needs. Some mechanism to allow additions or alterations to the standard for internal, bilateral, or multilateral basis will probably have to be devised.

The following discusses the options, mainly from the perspective of data representation and codes.

3.1. Broad Overall Policy

There are many possible choices, ranging from doing very little to investing many resources and taking a lead role in developing a meteorological XML standard.

3.1.1. Do Nothing

WMO has established a reliable and efficient system of data transfer between National Meteorological Services. While the use of XML appears certain to grow throughout the world, and within individual NMS, specialized codes such as BUFR and CREX can continue to be used efficiently between specialist agencies. WMO could choose to ignore XML and concentrate on maintaining and extending the existing codes.

This option has the advantage of minimizing resource usage and effort by the WMO committees and expert teams. However, there are substantial disadvantages with this option. It is very likely that various segments of the meteorological community will simply develop their own, incompatible, versions of XML. Metadata interchange between national meteorological services, and between operational forecasting, climatology, and oceanographic communities, may be difficult if they have decided upon different dialects of XML.

3.1.2. Wait, then review and co-ordinate the application of XML

The adoption and application of XML is in a state of rapid growth. Developments in the Internet world cannot be predicted with any certainty beyond a couple of years. So the wisest course may be to allow the use of XML in meteorology to mature for 2 to 3 years (its use in other areas is already mature), then review its application to meteorological data.

It is likely that, without WMO coordination, meteorological XML definitions will be developed independently several times. This duplication of effort could be considered as useful experimentation leading to the evolution of an outstanding solution, which WMO could then endorse. In practice, this is unlikely to occur as the communities who have developed their own standards will have strong, vested interests in maintaining them, and will probably oppose the adoption of a WMO standard that differs from the standards they have developed for their own use.

3.1.3. Participate in the development of XML standards

WMO could choose to closely follow and participate in other efforts to develop XML standards for meteorological information without taking a lead role. This would probably require less effort than taking a lead role, but could result in duplication of effort and the development of competing, incompatible standards. Participation in standardization efforts led by other Organizations, such as the aviation industry, the media industry, and other end users of meteorological information, could result in a superior solution being devised.

3.1.4. Lead the development of meteorological XML standards

Developing a specialized weather XML format to be used by all WMO members (and clients) is an obvious strategic option given the worldwide trend to develop industry standard XML vocabularies. The experience and knowledge associated with the development of WMO codes could be exploited directly in the development of a more broadly based standard. If such a standard could be developed and agreed in a relatively short time it would save considerable duplication of effort as individuals and agencies around the world seek their own meteorological XML solutions. However, reaching international consensus is likely to be a difficult task, which would continue past an initial formulation as new data types and client requirements arise. On the positive side, WMO has a long history of developing and setting successful standards, albeit more slowly than many users would like.

3.2. Language Issues

WMO has traditionally not endorsed the use of any one language in codes or data representation and exchange formats. This has been one of the reasons WMO codes have favoured numerical representations for most data. To date, almost all the proposed international standards for XML vocabularies have been English-based. XML makes it easy to use non-English element names (tags), attribute names, and content. The exchange of XML files between users requires the element names and attribute names to be compatible, implying a common language, or at least a translation mechanism to a common language.

3.2.1. Use a vocabulary based on English

This would require the creation of a standard set of English names, to be used by all WMO member states as the element names, attribute names and text content of meteorological XML files. This would probably not be satisfactory for many non-English speaking countries, but may be acceptable given the increasing dominance of English in international communications.

3.2.2. Use arbitrary identifiers

One possibility is to use the identifiers that have already been created for other purposes. For instance, the codes manual defines the CREX descriptor “B12001” to be air temperature/dry bulb temperature in Celsius at a resolution of 0.1C, so the tag <B12001> could be defined to mean this. This would make the meteorological XML vocabulary independent of the particular language, at the expense of destroying one of the main advantages of XML over other formats, which is its “self-contained” nature. On the other hand, short, otherwise meaningless, element names could be used to minimize message length.

Even where XML documents refer to other documents, the meaning is usually still clear from the element tags and attribute names, without using the reference, although this is not always the case. Using arbitrary and otherwise meaningless identifiers would make these reference documents describing the meaning of the identifiers essential to determining the meaning of an XML document.

3.2.3. Create a specialized vocabulary using a mixture of languages

Another possibility is to use words, or well understood abbreviations, from several, or many, languages. This has already been done with the METAR and SPECI codes where the symbols for present and past weather are abbreviations of words from at least two (possibly three) languages. Words could be chosen on the basis of their similarity to words of the same or similar meaning in several languages, their brevity (which would keep the element and attribute names reasonably short), and their lack of similarity to words of very different or opposite meaning in another language.

People reading short XML files, or decoded versions of XML files where the element names, attributes and values are suitably displayed to show the file structure, would need to know only a relatively small number of foreign words. In addition, words (even foreign words) are generally easier for people to remember than arbitrary numbers or arbitrary identifiers.

3.2.4. Create several vocabularies with translations

XML has the ability to specify XML translations by using eXtensible Stylesheet Language (XSL, refer to Appendix 1). It should be possible to specify the element and attribute names, and the terms to be used in content, in several languages, and to create set of “style sheets” to translate from one language to another as needed. For example, it should be possible to translate all instances of “Wind-Speed” to “Vitesse-du-Vent”. Care would have to be taken to correctly handle cases where the translation of a word or phrase depends on its context.

This would have the advantages that meteorological XML files could be distributed in any of the supported languages. A disadvantage would be a heavy reliance on the XSL style sheets supporting the translations, which would need to be maintained and updated. Normally, XML documents would be created in whatever language was most appropriate, and only translated if necessary. One of the “languages” used could be a set of predefined identifiers as suggested in section 3.2.2, or a specialized vocabulary as suggested in 3.2.3. Use of one language as a common basis for the translations would reduce the number of translation style sheets needed if more than two languages were supported, from n*(n-1) to 2*(n-1) if there were n languages.

3.3. Specialized or general -purpose XML schemas

It is possible to develop many specialized XML schemas, one for each observation type, one for each type of dictionary, and so on. Alternatively, a small number of general-purpose XML schemas could be used. Many variations between these extremes are also possible.

3.3.1. Use specialized XML schemas

One example of this would be to develop separate schemas for Surface Land Observations (SYNOP), Aviation Surface Observations (METAR), Ship Observations, etc. This would obviously require a lot of effort to develop and check each of the many schemas, but would have the advantage that the schemas could be optimized for their use.

3.3.2. Use general-purpose schemas

An example of this would be a single, reasonably flexible schema for all meteorological, oceanographic or hydrometeorological observations. This would probably be fairly difficult to develop initially, but would almost certainly be much easier to maintain and update in the long run

3.3.3. Use semi-specialized schemas

One example of this could be separate schemas for surface observations, upper-air profiles, upper air, single level observations, and so on. There would be more schemas to develop and check than in the case of general-purpose schemas, but the semi-specialized schemas may be more efficient to generate and process.

3.4. Features of XML to be used

There are several ways in which an XML standard can be designed. The XML can be extremely generic, with only a few elements, or can have thousands of elements. It is possible to make little (or no) use of attributes, or to put almost all the information in attributes. It is also possible to specify tags containing common information that are then referred to later, or to always put all the information where it is used. Some examples of the various approaches are given in appendix 7.

3.4.1. Generic XML formats versus specific XML formats

The generic approach is to include the names of the forecast (or observed) parameters as data. An example would be to have elements like “parameter”, “name” and “value”, and use the name element to specify the parameter (e.g “MSLP”) whose value was being specified. At the other extreme, almost everything can be expressed as differently named elements (or attributes). For example, “MSLP”, “Temperature”, “Dew-Point” and so on could all be separate XML elements. Various approaches between these extremes are also possible.

The generic approach has the advantage that the description of the allowed element and attribute names and how they can be used (the XML schema) is relatively short and easy to maintain. The resulting schemas are also flexible, and new parameter names can be introduced without changing the schema. In addition, if carefully designed they may allow packages that render XML by ignoring tags that are not understand to produce a more understandable display. On the other hand, the generic approach will not allow XML parsers to validate the parameter names and other similar content, may make the XML harder for people to read, and may be harder for an application to process.

In contrast, the use of many different element names results in a large, complex XML schema, but permits much more thorough validation by the parser. Approaches between the extremes result in medium-sized XML schemas with an intermediate level of automatic checking by validating XML parsers.

3.4.2. Use of Elements versus use of Attributes

It is possible to put nearly everything in elements, or to put almost everything in attributes, or to adopt an intermediate approach. Using attributes often allows tighter checking than using elements, and the resulting XML is sometimes shorter. The use of elements is usually more flexible, and often seems more natural. In addition, if the XML tags are stripped out, the remaining text may be easier to understand if elements are used in preference to attributes.

3.4.3. References versus Repetition for shared data and metadata

If the more generic approaches mentioned in section 3.4.2, are used, it is possible to put repeated data and metadata separately to the non-repeated data. This can result in large reductions in data volumes. Where the two applications sharing data have access to a common data store, the shared data can be replaced with a reference, for even greater savings.

Alternatively, the shared data can be repeated with each of the data items it relates to. This increases data volumes, but may result in a more easily readable file, and keeps related data close together. In some cases, for example where the shared metadata is unusually large, this can result in large increases in data volumes. The amount of metadata is sometimes larger than the amount of data, and there is almost no limit to the amount of metadata that could potentially be included.

4. Examples of the use of XML in Meteorology

At present there appear to be few operational uses of XML in meteorology. Some examples of the operational or experimental use of XML for which details are available are discussed below. Others are briefly mentioned, either because details were not available, or because they were considered to be of less importance.

4.1. OMF

Weather Observation Markup Format (OMF)
was designed by the United States Navy to represent weather observation reports (see Appendix 2). OMF is being used operationally in the US Navy for distributing weather reports to remote databases. The US Navy also uses OMF to distribute forecasts and warnings. OMF is not very generic and makes extensive use of specialized tags and attributes.

4.2. ET/IDM work on Metadata

The WMO Expert Team on Integrated Data Management (ET/IDM)
 is working on representing metadata in XML. The main focus of their work is on establishing metadata standards for WMO. They are also working on representing the metadata describing WMO member’s data holdings in XML.

4.3. Russian Meteo XML

The Russian Federal Service for Hydrometeorology and Environment Monitoring has developed a climatological data entry, viewing and analysis system (CliWare) that makes extensive use of XML as the main data format to transfer data between components of the system. They also use Meteo XML for some internal data exchanges. A partial description of this in included in a document
 presented at a recent meeting of the ET-IDM.

4.4. EGOWS

Within the EGOWS (European working Group on Operational Meteorological Workstation Systems), an informal group that discusses and exchanges ideas about new developments in the field of operational workststations, a subgroup is developing a list of Meteorological Objects (MO). The aim is to agree on a standardized list of MO's, including a full set of attributes, and to submit this to WMO as a reference document. The list will also include the conceptual models used in SatRep (a European initiative to define meteorological conceptual models from satellite imagery and NWP output). As an illustration, corresponding XML-objects will be created, with preliminary examples available in mid 2002.
4.5. “FishOnline” Website

Three weather formats (weather-observations, weather-forecasts and weather-warnings) were designed by the Australian Bureau of Meteorology in 2001 to deliver observations, forecasts and warnings to a state government fishing website.
 More details, together with an edited example, are given in appendix 3. The FishOnline XML formats are moderately generic, and separate much of the metadata from the data elements so that it does not have to be repeated.

4.6. Ttable

A generalized XML format known as tree-table-xml is under development in the Australian Bureau of Meteorology. Its design is intended to accommodate current and future meteorological XML format requirements by being extremely generic. Instead of representing meteorological metadata in XML tags, tree-table-xml defines a high-level data structure called a ttable. This is not specific to meteorology, but is a generic format capable of handling a wide variety of data. More details and examples are given in Appendix 4. This XML format, in addition to being generic, also separates much of the metadata from the data so that it does not have to be repeated for every data element, but can be included by reference.

4.7. MEDS

The Canadian Marine Environmental Data Service (MEDS) has done some preliminary work on representing data in XML using “bricks”: building blocks such as the units of measurement, including scale factors, original measurement units, archived units, and so on. The “bricks” are combined in various ways to handle all the required types of data. An example of this approach is given in Appendix 5.

4.8. The Met Office (UK)

Some years ago the Met Office did a lot of work on representing some WMO documentation in SGML (a more complex superset of XML). They also demonstrated how to represent the BUFR code tables in XML. The work was largely successful, and has great potential, but was not continued with at the time.

4.9. Other known uses of XML by the meteorological community

In addition to OMF (see 4.1 above), the US Navy is using XML extensively for other meteorological and oceanographic data such as warnings. The US Navy is also using XML as a “wrapper” around GRIB messages, making the description of the data (effectively the Product Description Section and the Grid Description Section) available as XML, while the actual data content is either inline in the XML as base-64 encoded binary data, or held externally in a file. In the latter case, the XML contains a reference to the file.

(
The US Department of Defence is actively developing a joint meteorological and oceanographic XML standard for the department (Navy, Air Force, Army).

(
There is a European Web server project that plans to use XML for the catalogue.

(
A European project to create a CD-ROM of climate observations in XML also exists.

(
EUMETSAT has successfully used XML for documenting operational procedures, and this did ensure uniformity and consistency of layout and content. They have not yet used it for describing meteorological data.

(
Several organisations, including the US Air Force Weather Agency and EUMETSAT, are considering using XML for internal data sharing, but are not expecting to do so in the immediate future.

(
WeatherReport
 XML is a simple XML format for distributing simple précis forecasts. However, WeatherReport is of limited use because of the absence of forecast validity period and forecast expiry date.

5. Possible uses of XML in Meteorology

The examples above illustrate some of the possible ways in which XML has been, is being, or could be used in meteorology, but many others will become apparent as XML becomes ubiquitous. Some of the more obvious possibilities are discussed briefly below.

5.1. Data transfer between National Meteorological Services

Currently most data transfers between the various Meteorological Services, use either the traditional alphanumeric codes, BUFR, CREX or GRIB. These codes have been developed with efficiency (minimal use of communications bandwidth) in mind. XML could be used as an alternative, but is probably impractical except for relatively small data transfers.

Advantages of using XML include the fact that XML permits the data and metadata to be transmitted together, an important asset for maintaining the integrity of data sets and developing comprehensive and specialist database systems. Disadvantages include the larger data volumes. Experiments indicate that XML is much larger than the existing codes. Appendix 3 contains an example of a message in both CREX and XML, demonstrating the difference. Compression can help, but the traditional codes and CREX also compress well. BUFR-encoded data is usually much smaller than equivalent compressed XML.

5.2. Data transfer between Meteorological Services and external clients

It is in the transfer to external clients that the self-contained, portable nature of XML appears to be a very attractive alternative to existing meteorological codes. The specialized codes used by WMO require complex manuals and decoding software. This can deter external clients from using the data. The wide availability of XML parsers, and the growing adoption of XML on web sites will ensure that National Meteorological Services feel pressure to supply data in XML to external clients.

There are many advantages to using XML for these data transfers, and few, if any disadvantages. It should be possible to define standard equivalents in XML of the elements reported in the CREX and BUFR codes, and thus automate the conversion of BUFR and CREX to XML. One possible approach to this, for one particular XML format (tree-table-xml), is outlined in Appendix 6. A similar approach should be possible for any other meteorological XML standard for observations that may be developed.

5.3. Representing Documentation

XML can be used to represent documentation in a form that can be translated to multiple formats, such as a searchable database, a word-processing document, a web page, or a plain text file. Examples where such a format could be valuable include the code tables in the WMO Manual on Codes. If these were appropriately represented in XML, then it should be possible to automatically generate (using XSL or an equivalent) the text files needed as input to most BUFR decoders, the word-processing documents needed to create printed versions, and records suitable for insertion in a database. This should minimize transcription errors, which can and have been a significant problem.

There are numerous other documents, including station dictionaries and bulletin catalogues, that are required in multiple forms. The forms include those suitable for humans to read, computer readable forms for inserting data in to databases, and word processing and spreadsheet documents.

5.4. Data feeds to web pages

The ability to translate data in XML to dynamic web pages using XSL will allow meteorological data to be presented much more easily and flexibly on web pages than at present. It is likely that this will lead to XML being used for data transfer, within National Meteorological Services for their own web pages, from NMS to external clients, and between NMS (in parallel with existing GTS traffic), where the final destination or end user requires XML, HTML, or a similar format.

5.5. Databases

The transparency, generality and structure of XML allow data to be readily incorporated into databases. In some cases XML itself is used for the database structure. The real-time and offline exchange of data, in original and value-added forms, can be accomplished with the same standard since all the required information is always immediately accessible. Initial versions of climatological databases can be constructed in real-time and updated as better knowledge is gained. Catalogues specific to certain areas can be generated automatically from the real-time and offline data streams.

5.6. Request-Reply protocol between Meteorological services

At present, requests for data from another National Meteorological Service have, in most cases, to be specified it terms of the rather arcane GTS bulletin headers. The self-describing nature of XML should allow non-routine data transfers between National Meteorological Services to be done in terms of the data required, rather than in terms of obscure codes specified in manuals and catalogues. At present such special requests frequently require manual intervention. Using XML should allow such ad-hoc requests to be automated.

6. Conclusion

There are many strategic options that WMO could follow. It is important that the relevant WMO committees, including the Expert Team on Data Representation and Codes (ET/D&RC), the Expert Team on Integrated Data Management (ET/IDM), and the Inter-programme team on Future WMO Information Systems (FWIS) make recommendations concerning which options should be chosen. If WMO decides to develop an XML standard for meteorological information, then these (or other) expert teams will have to develop the standard.

A preliminary set of recommendations could be to:

· set up a workshop to bring together representatives of the various groups and committees in WMO who are working on XML, and appropriate external organisations, to make recommendation on the use of XML in meteorology;

· urgently establish a WMO standard XML vocabulary linked to the existing lists of meteorological parameters defined in the BUFR and GRIB code tables;

· use English as the base language, with translations to other languages using XSL;

· consider the development of software to convert BUFR, CREX, and the traditional alphanumeric codes to XML, if and when a meteorological XML standard is finalized.

7. Acknowledgments

In addition to the main authors, the following have made contributions or provided useful information or suggestions.

Jeff Ator, NOAA, USA, Tom Beeck, FNMOC, USA, Dick Blaauboer, KNMI, Netherlands, Simon Elliott, EUMETSAT, Peter Gigliotti, BoM, Australia, Terry Hart, BoM, Australia, Kirby James, Met Office, UK, Bob Keeley, MEDS, Canada, Chris Little, Met Office, UK, Geoff Love, BoM, Australia, Joel Martellet, WMO, Switzerland, Gil Ross, Met Office, UK, Neville Smith, BoM, Australia, Alexander Besprozvannykh, Russian Federation, Kelvin Wong, BoM, Australia and Paul Zamiska, AFWA, USA.

Appendix 1. Introduction to XML

XML is the Extensible Markup Language and has been a World Wide Web Consortium (W3C) standard since February 1998.
 XML looks like HTML with its element tags and attributes. The main difference is that XML is more strictly defined, and contains data and metadata, but usually no information about presentation (fonts, colours, sizes, etc.). XML is extensible, which means it is used for making more specific data languages, such as HTML, or a weather XML format.

A.1.1 Brief description of XML

An XML document is a structured hierarchy of elements that have opening and closing tags, some attributes, usually some text (the data), and may also contain other (nested) elements. Element and their attributes are metadata about the data between the element tags.

As an example, one way to represent a temperature of 20.5 degrees Celsius in XML is

<?xml version="1.0"?>

<my-xml-document>

<temperature unit=”Celsius”>20.5</temperature>

</my-xml-document>

All XML documents should begin with the <?xml version="1.0"?> header followed by the root element. The root element in this example begins with the user defined opening tag <my-xml-document> and ends with the closing tag </my‑xml‑document>. Normally there are elements nested within the root element. In this example there is just one element – the temperature element.

The example is a well-formed XML document:

· there is a root element enclosing all other elements;

· all elements have a start and end tag (or are empty elements);

· all elements are nested hierarchically without any overlapping; and

· all attribute values are enclosed in double quotes or single quotes.

An empty element with a missing temperature value could look like

<temperature unit=”celsius” />

which is equivalent to

<temperature unit=”celsius”></temperature>
Information about the elements, (known as attributes) are embedded in the opening tag of an element and look like

unit=”celsius”
A.1.2 Processing XML

An XML reader (often called a parser) is software that reads and understands an XML document. The document tags, attributes and data are broken out into memory ready for processing. XML parsers may be downloaded from the World Wide Web free of charge, for use in programs written in the Java and C++ languages.

A parser requires an XML document to be at least well formed – conforming to the XML format syntax rules listed above. In addition, a parser may have validation mode switched on, so that it will check the XML document against an additional set of rules contained in a Document Type Definition (DTD) or XML schema. These rules are user-defined and determine (among other things) the names of the elements and attributes and their order in the document hierarchy. This means that a sender and recipient of an XML document with a mutually agreed upon DTD can make sense of the document. There is a worldwide trend toward defining industry wide DTDs for Business-to-Business (B2B) communication using XML documents.

A.1.3 Some advantages and disadvantages of XML

Advantages of XML include:

· data represented in XML is structured;

· metadata tags and attributes are custom defined (by agreement) between parties sharing XML documents;

· the structure of an XML document can be defined and enforced by agreed rules contained in a DTD (Document Type Definition), or in an XML schema;

· XML is a widely used standard;

· free parsers are available to decode and encode XML;

· XML is license free, platform-independent and well-supported;

· XML is suited to B2B (Business-to-Business) communication, as well as offering some human readability; and

· XML typically represents data and leaves presentation issues for style sheets that can transform data to many other formats for display, such as HTML.

Disadvantages of XML include:

· XML documents are verbose compared with the traditional WMO report formats, and compared with the newer code formats BUFR (Binary Universal Form for data Representation) and CREX (Character Representation form for data eXchange);

· XML DTDs are typically written in English; and

· an XML weather format has been difficult to define.

A.1.4 XML Frameworks

XML has an associated set of software tools and standards that make it easier to process XML documents. These tools can be used for software development (DOM and SAX), for document reformatting (XSL), and for document decoding (DTD). The remainder of this section explains these tools in more detail and can be skipped on a first reading.

A.1.4.1. Software development tools

The Document Object Model (DOM) is a standard data structure and Application Programming Interface (API) for representing an XML document in memory. An XML parser can automatically generate, in computer memory, a DOM that a software application, can then traverse and extract information from, using the DOM API. The DOM can be modified and converted back into an XML document if desired.

The Simple API for XML (SAX) is a widely adopted (but non-W3C) API that processes an XML document as a series of events (start-of-element, characters, end-of-element, etc.) fed to a program that may then use the data in the order that it is read.

A.1.4.2. Automated reformatting

The Extensible Stylesheet Language (XSL) consists of three parts:

· XSL Transformations (XSLT): a language for transforming XML documents. XSLT can take an XML document as input and modify or rearrange its content and structure;

· XML Path Language (XPath): an expression language used by XSLT to access or refer to parts of an XML document;

· XSL Formatting Objects: an XML vocabulary for specifying formatting semantics for display of XML data, for example as HTML.

XSL is a set of standards and free software that can be used to automate the processing and formatting of XML documents for use within an enterprise and by external consumers of information.

It should be possible to use XSL to automatically translate the tags, and in some cases the content, of an XML document from one language to another provided the style sheets contain the appropriate equivalent terms. XSL can also be used to translate XML documents to a variety of display and exchange formats, such as HTML, XHTML, RTF (Rich Text Format, used by many word processors), or comma-delimited files (used by many spreadsheets and databases).

A.1.4.3. “Decoding” (or Parsing) and validation

A Document Type Definition (DTD) is a set of rules (expressed in its own syntax) that are used to validate an XML document. With validation switched on, an XML parser will check XML documents against the DTD (referred to within the XML document) and proceed with parsing only if the document conforms to the DTD.

An XML Schema (expressed in XML syntax) is a more expressive and powerful replacement for DTDs that was approved by the W3C in May 2001.

XML parsers typically produce an internal structure that matches the document, allowing the relationship between the parts of the documents to be displayed to users.

Appendix 2. OMF

A.2.1 Brief description

OMF is a serious attempt to deal with the limitations of existing WMO observational formats for delivering observational data to clients. OMF includes static station data (such as its location and long name) normally omitted from WMO formats. While existing WMO codes are “well suited for processing of a massive feed, it is not convenient for a client that is only interested in weather reports for a (relatively) small area…Many WMO codes, in particular, a synoptic code, are very obscure. To make any use of a report, a user application has to decode the report first, which is a rather non-trivial task. It involves following intricate, irregular rules and consulting numerous WMO coding tables. Annotating reports with decoded data in convenient and uniform units greatly increases reports' value and accessibility. Report consumers are frequently interested in derived quantities like cloud ceiling, flight conditions, or humidity. These parameters can be computed from the data in the report; however, the computation is sometimes not trivial, and often messy. It makes sense therefore for a server to compute the most popular derived parameters and serve them along with the raw report data.”

OMF provides a unified observational format that is much better suited to the needs of external clients than WMO codes.

A.2.2 Example

An example of some aviation synoptic observations (METAR) represented in OMF is given below. The example was obtained from:

http://zowie.metnet.navy.mil/~spawar/JMV-TNG/XML/OMF.html.

And was edited to make it more readable by eliminating confusing line wrapping where necessary.

<!DOCTYPE Reports SYSTEM "OMF.dtd">

<Reports TStamp="950226528">

<SYN Title='METAR' TStamp='950104440'

LatLon='36.583, -121.85' BId='724915'

SName='KMRY, MONTEREY PENINSULA' Elev='77'>

<SYID>KMRY 091354Z</SYID>

<SYCODE>RMK AO2 CIG 003V008

SLP193 T01000094</SYCODE>

<SYG Wind='110, 1.5' Vis='12880' Ceiling='400'

T='10' TD='9' AS='1018' Clouds='66///'>

11003KT 8SM BKN004 10/09 A3006

</SYG>

</SYN>

<SYN Title='METAR' TStamp='950104200'

LatLon='49.95, 7.2667' BId='106160'

SName='EDFH, HAHN' Elev='503'>

<SYID>EDFH 091350Z</SYID>

<SYG Wind='240-330, 7.5-13.5' Vis='INF' WX='-SHSN'

Ceiling='1500' T='3' TD='0' AS='1023' Clouds='61///'>

28015G27KT 240V330 9999 -SHSN FEW009 BKN015

03/M00 Q1023

</SYG>

</SYN>

<SYN Title='METAR' TStamp='950104200'

LatLon='57.067, 8.7' BId='60240'

SName='EKTS, THISTED LUFTHAVN' Elev='7'>

<SYID>EKTS 091350Z</SYID>

<SYG Wind='310, 8.5' Vis='INF' Ceiling='INF'

T='6' TD='1' AS='1002' Clouds='00///'>

31017KT CAVOK 06/01 Q1002

</SYG>

</SYN>

<SYN Title='METAR' TStamp='950104500'

LatLon='63.683, -170.5' BId='702035'

SName='PASA, SAVOONGA AIRPORT' SType='AUTO'

Elev='16'>

<SYID>PASA 091355Z AUTO</SYID>

<SYCODE>RMK AO1 TSNO</SYCODE>

<SYG Wind='90, 6.5' Vis='2012.5' Ceiling='100'

T='-4' TD='-5' AS='1011' Clouds='88///'>

09013KT 1 1/4SM OVC001 M04/M05 A2986

</SYG>

</SYN>

</Reports>

FishOnline

Three formats are used, weather-observations, weather-forecasts and weather-warnings.

A.2.3 Brief description

The weather-observations format provides useful metadata such as type (air temperature), unit (Celsius) and unit abbreviations for display. Time zone, local and UTC observation time, are also provided to simplify client time calculations. However, weather-observations does not attempt to unify the range of existing observation formats, does not provide derived values, and was specifically intended for a particular, single purpose.

The weather-forecasts format maps a range of Tasmanian forecast products to XML. Forecast validity start and end times are provided, along with the forecast period (the number of days). Locale information is provided, though the client needs to know implicitly which locales are points or areas.

The weather-warnings format is a subset of the weather-forecasts format and provides a range of warnings required by the client.

The project successfully satisfied client requirements but would be difficult to adapt to different or dynamic client requirements.

These formats used relatively few tags. They avoid duplication of metadata by including such things as the full name of the reported or forecast parameter, the units, and an abbreviation in a preliminary part of the document, and then referring to this later in the document by the use of the abbreviation

A.2.4 Example

The actual XML files are rather large, so only an extract from the weather-observations file is shown below. Missing and deleted lines are indicated by “… text deleted …”. In addition, tabs have been replaced by spaces and extra line feeds and other white space have been added to make the structure clearer.

<?xml version="1.0"?>

<!DOCTYPE weather-observations

 SYSTEM "http://www.bom.gov.au/dtd/weather-observations.dtd"

 [<!ENTITY degree "°">]>

<weather-observations>

 <product id="IDT65013"

 name="Current Weather Details for Tasmania"

 create-time-local="20020104T1609"

 create-time-utc="20020104T0509"

 time-zone="AEDT">

 <head>

 <copyright-notice owner="Bureau of Meteorology, Australia" year="2001">

 <text>

 ... text deleted ...

 </text>

 </copyright-notice>

 <issuing-office>

 Bureau of Meteorology, Tasmania and Antarctica Regional Office,

Hobart, Tasmania, Australia

 </issuing-office>

 </head>

 <group name="current">

 <obs-def obs-time-local="20020104T1609"

 obs-time-utc="20020104T0509" time-zone="AEDT">

 <data-def type="at" name="temperature"

 unit="celsius" unit-abbreviation="°C" />

 <data-def type="dp" name="dewpoint"

 unit="celsius" unit-abbreviation="°C" />

 <data-def type="rh" name="relative humidity"

 unit="percent" unit-abbreviation="%" />

 <data-def type="wd" name="wind direction"

 unit="compass points" unit-abbreviation="" />

 <data-def type="wskm" name="wind speed"

 unit="kilometres per hour" unit-abbreviation="km/h" />

... text deleted ...

 </obs-def>

 <obs obs-time-local="20020104T1500"

 obs-time-utc="20020104T0400"

 time-zone="AEDT"

 site ="092003"

 wmo="95989"

 station="Bicheno"

 source="SYNOP">

 <d t="at">20.2</d>

 <d t="dp">12.4</d>

 <d t="rh">61</d>

 <d t="wd">E</d>

 <d t="wskm">4</d>

... text deleted ...

 </obs>

 ... text deleted ...

 </group>

 </product>

</weather-observations>

Tree-table-XML

Tree-table-xml is an experimental XML format under active development by the Australian Bureau of Meteorology. It defines a structure called a tree-table, or ttable for short.

A.2.5 Brief description

A ttable is a table with rows, columns and cells. The ttable is recursively defined so that any cell may contain a ttable, other XML, or data. A typical dataset is therefore represented as a tree of tables – hence the name ttable. Examples of a weather observation in tree-table-xml are given in sections A.4.2 and A.4.3.3, with a CREX encoded equivalent in section A.4.4 for comparison.

A typical tree-table-xml document consists of a ttable with a column of two cells. The first cell contains a ttable of metadata, and the second cell contains a ttable of data. This approach has many advantages, such as a concise Document Type Definition (see section A.4.5), a simple high level design, and the treatment of metadata as data. The treatment of metadata as data greatly simplifies the description of new data formats. A more detailed discussion of the advantages of the tree-table-xml format, together with some disadvantages is given in section A.4.6. Another advantage of tree-table-xml is that it should be possible to specify a translation from BUFR or CREX to tree-table-xml by specifying rules for translating BUFR and CREX table B entries in to ttable fields. A possible approach to this is outlined in appendix 5.

A.2.6 Example with full metadata

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE tree-table-xml SYSTEM "http://servb.ho.bom.gov.au/event/tree-table-xml.dtd">

<tree-table-xml>

<ttable id="one-minute-report">

<row>

<col id="one-minute-report-tables">

<ttable id="col-meta-data">

<row>

<col id="id">wmo_num</col>

<col id="element">wmo-number</col>

<col id="unit">Numeric</col>

<col id="class">java.lang.String</col>

<col id="decimal-precision"

class="java.lang.Integer">0</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">short_name</col>

<col id="element">station-name</col>

<col id="unit">Character</col>

<col id="class">java.lang.String</col>

<col id="decimal-precision"

class="java.lang.Integer">0</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">name</col>

<col id="element">station-name</col>

<col id="unit">Character</col>

<col id="class">java.lang.String</col>

<col id="decimal-precision"

class="java.lang.Integer">0</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">latitude</col>

<col id="element">latitude</col>

<col id="unit">Degree</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">2</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">longitude</col>

<col id="element">longitude</col>

<col id="unit">Degree</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">2</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">height</col>

<col id="element">station-height</col>

<col id="unit">m</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">0</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">UTC_time</col>

<col id="element">UTC-time</col>

<col id="unit">YYYYMMDHHMMSS</col>

<col id="class">java.lang.String</col>

<col id="decimal-precision"

class="java.lang.Integer">0</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">wnd_dir</col>

<col id="element">average-wind-direction</col>

<col id="unit">Degree true</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">0</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">wnd_spd</col>

<col id="element">average-wind-speed</col>

<col id="unit">m s**-1</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">1</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">air_temp</col>

<col id="element">instantaneous-air-temperature</col>

<col id="unit">degree Celsius</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">1</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">dwpt</col>

<col id="element">

instantaneous-dew-point-temperature</col>

<col id="unit">degree Celsius</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">1</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">stn_pres</col>

<col id="element">station-level-pressure</col>

<col id="unit">hPa</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">1</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">qnh_pres</col>

<col id="element">altimeter-setting-QNH</col>

<col id="unit">hPa</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">1</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

<row>

<col id="id">msl_pres</col>

<col id="element">msl-pressure</col>

<col id="unit">hPa</col>

<col id="class">java.lang.Double</col>

<col id="decimal-precision"

class="java.lang.Integer">1</col>

<col id="scale" class="java.lang.Integer">1</col>

</row>

</ttable>

</col>

</row>

<row>

<col>

<ttable id="data">

<row>

<col id="wmo_num">94860</col>

<col id="short_name">KMG</col>

<col id="name">KILMORE GAP</col>

<col id="latitude">-37.00</col>

<col id="longitude">144.00</col>

<col id="height">528</col>

<col id="UTC_time">20011114030232</col>

<col id="wnd_dir">169</col>

<col id="wnd_spd">14.0</col>

<col id="air_temp">13.6</col>

<col id="dwpt">9.3</col>

<col id="stn_pres">962.2</col>

<col id="qnh_pres">1024.7</col>

<col id="msl_pres">1024.2</col>

</row>

</ttable>

<!-- KILMORE GAP -->

</col>

</row>

</ttable>

</tree-table-xml>
A.2.7 Example (same data as A.4.2), metadata included by reference

This assumes that the customer or user has already received the metadata and has saved it, and does not need to receive it again. The receiving application would use the key "one-minute-report-tables” to retrieve the metadata from wherever it was saved.
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE tree-table-xml SYSTEM "http://servb.ho.bom.gov.au/event/tree-table-xml.dtd">

<tree-table-xml>

<ttable id="one-minute-report">

<row>

<col id="one-minute-report-tables">

<ttable id="col-meta-data">

</ttable>

</col>

</row>

<row>

<col>

<ttable id="data">

<row>

<col>94860</col>

<col>KMG</col>

<col>KILMORE GAP</col>

<col>-37.000</col>

<col>144.000</col>

<col>144.000</col>

<col>20011114030232</col>

<col>169.0</col>

<col>14.0</col>

<col>13.6</col>

<col>9.3</col>

<col>962.2</col>

<col>1024.7</col>

<col>1024.2</col>

</row>

</ttable>

</col>

</row>

</ttable>

</tree-table-xml>

A.2.8 CREX equivalent of data in A.4.2. and A.4.3

CREX++

T000101 A000 D01001 B01018 B01015 D01023 D01011 D01013

 B11011 B11012 B12004 B12006 B10004 B10052 B10051++

94 860 KMG KILMORE GAP -3738 14496 00528 2001 11 14 03 02 32

 169 0140 136 093 09622 10247 10242++

7777
A.2.9 Tree-table-XML DTD (Document Type Definition)

<!-- tree-table-xml.dtd -->

<!-- Author: M Gorman 18/12/2001 -->

<!-- tree-table-xml -->

<!ELEMENT tree-table-xml (ttable)>

<!-- ttable -->

<!ELEMENT ttable (row*)>

<!ATTLIST ttable id CDATA #IMPLIED>

<!ELEMENT row (col+)>

<!ATTLIST row id CDATA #IMPLIED>

<!-- A col is effectively a ttable cell. -->

<!ELEMENT col (#PCDATA | ttable)*>

<!ATTLIST col id CDATA #IMPLIED>

<!ATTLIST col class CDATA #IMPLIED>

A.2.10 Advantages and Disadvantages of tree-table-xml

Advantages

Concise Format

· The DTD is very concise (see section A.4.5), and consists of just four elements: tree-table-xml (the root element), ttable, row and col. Minimal attributes are defined for bootstrapping metadata: id and class.

· Unlike typical XML formats, metadata can be switched off, because metadata is represented as text within a document (and not in the DTD) it can be omitted from documents. This may be desirable where the recipient already has a copy of the metadata (from an initial transmission or by some other means) and can automatically apply the metadata to incoming TTable objects, as they are generated by the parser. This helps to address the inherent verbosity of XML (compare A.4.2 with A.4.3).

· Local data may be defined and omitted from transmitted tree-table-xml documents. Such data may be test data, logging data or confidential data.

General Processing Techniques
· The simple high-level design facilitates the development of software that can process a tree-table-xml document without knowing its content type. For instance, a Java class TTable has been defined that performs generic multi-key sorting and searching of tables.

· There is a Java TTableXml class that takes tree-table-xml documents as input and generates TTable objects as output. It does not need to know what kind of data is in the document.

· There is no limit to the number and type of metadata tables that can be defined for a data table. These may include any data that a downstream process may require to adequately use the document, such as a processing history.

· tree-table-xml is a canonical XML document format suitable for internal processing within a meteorological enterprise or for exchange of data with other meteorological agencies with shared software libraries for processing tree-table-xml.

· A tree-table-xml document can be used as a request for data. A client process can fill out a document with metadata describing the desired data and (if it is possible to fulfil the request) the document can be populated with a data table cell and returned to the requesting process.

Standard Metadata Defined

· Metadata (and meta-metadata) are treated as data, and can therefore reside in a database (or a local XML copy of a central metadata repository) and be readily updated or extended.

· The metadata repository can include parallel natural language translations of metadata to meet WMO requirements for non-English languages.

Manages Change
· Like any XML document, tree-table-xml can be transformed into formats more suited to clients such as:

(
Sophisticated clients who perform value added processing;

(
Website clients who wish merely to display the data.

· The tree-table-xml format is designed to adapt well to changing processing and client needs. Meta-meta-metadata is stable and represented as XML tags: ttable, row and col. Meta-metadata is subject to some change and is represented as data in a metadata table: element type, unit, precision, scale, etc. Metadata is subject to significantly more change with the introduction of new observational technologies, forecast types and types of guidance.

· A set of standard agreed upon XSL style sheets may be used to transform tree-table-xml into other more specific meteorological formats for clients. This is better than defining XML formats explicitly by committee, because changes in metadata will flow through automatically to clients. Only the style sheets need committees to define them.

Disadvantages

· The sample metadata used in this paper is closely tied to Java and should be made more independent of the language used to parse the XML by using a standard such as Schema primitive datatypes.

Example of XML from MEDS

This has been edited to delete many lines to make it shorter. Deleted lines have been marked as “… text deleted …”. This is a moderately generic version of XML, using many elements, but minimising the number by using generic tags like ‘dVarName” (name of a dependant variable).

<Mission>

<!-- Use Mission as a synonym for cruise -->

 <!-- RECORD IDENTIFIER -->

 <RecordID>

 <rRecName>MissionNo</rRecName>

 <rRecValue>49048</rRecValue>

 </RecordID>

 <!-- ARCHIVE INFORMATION -->

 <Archive_Information>

 <Receipt_Identifier>A01165D1</Receipt_Identifier>

 <Archive_Identifier>TESAC</Archive_Identifier>

 <Archive_Group>Ocean</Archive_Group>

 <aDate>20010529</aDate>

 </Archive_Information>

 <Event>

 <!-- Use Event as a synonym for station -->

 <!-- RECORD IDENTIFIER -->

 <RecordID>

 <rRecName>StationNo</rRecName>

 <rRecValue>55</rRecValue>

 </RecordID>

 <!-- LOCATION -->

 <Location>

 <!-- As many repeats of this as required -->

 <lLocName>LatitudeN</lLocName>

 <lLocValue>43.245</lLocValue>

 <!-- QUALITY -->

 <Quality>

 <qVariable_Name/>

 <qReliability_Code>1</qReliability_Code>

 <qJustification_Code/>

 <qUse_Code/>

 </Quality>

 </Location>

 <Location>

 <lLocName>LongitudeE</lLocName>

 <lLocValue>303.245</lLocValue>

 <Quality>

 <qVariable_Name/>

 <qReliability_Code>1</qReliability_Code>

 <qJustification_Code/>

 <qUse_Code/>

 </Quality>

 </Location>

 <Location>

 <lLocName>Date_Time</lLocName>

 <lLocValue>20010528015300.00</lLocValue>

 <Quality>

 <qVariable_Name/>

 <qReliability_Code>1</qReliability_Code>

 <qJustification_Code/>

 <qUse_Code/>

 </Quality>

 </Location>

... text deleted ...

 <!-- VARIABLE -->

 <Variable>

 <varName>waterPressure</varName>

 <varType>I</varType>

 <varDuplicate>N</varDuplicate>

 <varComponent>property</varComponent>

 <varMinimum>0.0</varMinimum>

 <varMaximum>10000.0</varMaximum>

 <Units>

 <uVariable_Name/>

 <uReceived_Units>decibars</uReceived_Units>

 <uStored_Units>decibars</uStored_Units>

 <uNull_Value>99999.999</uNull_Value>

 <uBelow_Detection_Limit/>

 <uAccuracy>0.1</uAccuracy>

 <uPrecision>0.1</uPrecision>

 <uConversion/>

 <uReference>none</uReference>

 </Units>

 <Sampling>

 <sVariable_Name/>

 <sMethod>selected</sMethod>

 <sInterval/>

 </Sampling>

 </Variable>

... text deleted ...

 <!-- INDEPENDENT VARIABLE -->

 <iVariable>

 <iVarName>waterPressure</iVarName>

 <iVarValue>0.0</iVarValue>

 <!-- DEPENDENT VARIABLE -->

 <dVariable>

 <dVarName>pistonPositionTop</dVarName>

 <dVarValue>203</dVarValue>

 <dVarTag/>

 <Quality>

 <qVariable_Name/>

 <qReliability_Code>1</qReliability_Code>

 <qJustification_Code/>

 <qUse_Code/>

 </Quality>

 </dVariable>

... text deleted ...

 <dVariable>

 <dVarName>argosPtt</dVarName>

 <dVarValue>20919</dVarValue>

 <dVarTag/>

 </dVariable>

 </iVariable>

 <!-- HISTORY -->

 <History>

 <Process_Identifier>RFMT</Process_Identifier>

 <hVersion>1.0</hVersion>

 <hDate>2001052901.01</hDate>

 <Executor>MEDS</Executor>

 <Action>CR</Action>

 <hVariable>RCRD</hVariable>

 </History>

... text deleted ...

 <d1Data>

 <!-- INDEPENDENT VARIABLE -->

 <iVariable>

 <iVarName>waterPressure</iVarName>

 <iVarValue>0.0</iVarValue>

 <!-- QUALITY -->

 <Quality>

 <qVariable_Name/>

 <qReliability_Code>1</qReliability_Code>

 <qJustification_Code/>

 <qUse_Code/>

 </Quality>

 <!-- DEPENDENT VARIABLE -->

 <dVariable>

 <dVarName>waterTemperature</dVarName>

 <dVarValue>12.6</dVarValue>

 <dVarTag/>

 </dVariable>

 <dVariable>

 <dVarName>salinity</dVarName>

 <dVarValue>33.5</dVarValue>

 <dVarTag/>

 <!-- QUALITY -->

 <Quality>

 <qVariable_Name/>

 <qReliability_Code>1</qReliability_Code>

 <qJustification_Code/>

 <qUse_Code/>

 </Quality>

 </dVariable>

 </iVariable>

... text deleted ...

 </d1Data>

 </Event>

 <Event>

 <!-- RECORD IDENTIFIER -->

 <RecordID>

 <rRecName>StationNo</rRecName>

 <rRecValue>56</rRecValue>

 </RecordID>

 </Event>

 <Event>

 <!-- RECORD IDENTIFIER -->

 <RecordID>

 <rRecName>StationNo</rRecName>

 <rRecValue>58</rRecValue>

 </RecordID>

 </Event>

</Mission>

Appendix 3. A possible translation from BUFR to CREX to Tree-table-XML

A.5.1
Translation method

A single BUFR or CREX message would be translated to a single XML document. The metadata definitions would be built from the expanded list of BUFR or CREX element descriptors. Data replication would be handled by using nested ttable XML elements. It would be difficult to derive some of the tree-table data, such as the short element ids used to link the metadata to the data, but this could probably be handled by either generating arbitrary identifiers, by using the BUFR or CREX descriptor, or by searching the BUFR or CREX element name for keywords and using them.

The ttable identifier for the whole set of reports will have to be generated, possibly by simply generating an arbitrary unique string.

The expanded BUFR or CREX table B descriptors could be converted to the corresponding elements of the metadata description in the first cell of the document, describing the data to follow.

ttable metadata id
BUFR/CREX equivalent

Id
None, possibly generate from element name, or create unique value

Element
Element name, spaces replaced with hyphen or underscore

Unit
Unit

Class
Generated from unit, see below

decimal-precision
Scale

Scale
0 for string values, 1 for numeric values

The (Java specific) “class” can be generated from the BUFR/CREX Unit.

If the BUFR or CREX unit is “Character” or “CCITT IA5” or an equivalent, then the class will be “java.lang.String”.

If the BUFR or CREX unit is “Code table” or “Flag table” then there are two choices. Either the data can be represented as integers, with the class “java.lang.Integer”, or the data can be decoded to the string representation by consulting the appropriate code or flag table and the class will then be “java.lang.String”. As an example, for BUFR table 0 20 012, CREX table B 20 012 (Cloud type), the class could be either “java.lang.Integer” with the corresponding data columns containing values like “28”, or “01”, or the class could be “java.lang.String” and the data columns would contain values like “Altocumulus castellanus or floccus” or “Cirrocumulus”.

If the BUFR or CREX unit is anything else, the class will be “java.lang.Double”.

Replications can be handled by nested ttables, which will need their own unique identifier. The repeated class B descriptors would be translated in to the first cell of the nested ttable.

For example, a hypothetical (and meaningless, for explanation only) CREX message is:

CREX++

T000101 A000 B12001 R01002 B20012++

203 31 28++

7777

The relevant table B entries are:

Reference
Element name
Unit
Scale
Data width

B12001
Temperature/Dry-bulb temperature
Celsius
1
3

B20012
Cloud type
Code table
0
2

This could be translated to something like that shown below, where arbitrary strings like “Report-type-0001” and “Field-0002” have been generated for values which can not be easily generated from the CREX tables. A sophisticated conversion program could possibly generate more sensible names, such as “Temperature” instead of “Field-0001” and “Cloud-type” instead of “Field-0002”. In either case, the full element name is in the meta-data.

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE tree-table-xml

 SYSTEM http://servb.ho.bom.gov.au/event/tree-table-xml.dtd>

<tree-table-xml>

<ttable id=”Report-type-0001”>

<row>

<col id=”Table-0001”>

<ttable id=”col-meta-data”>

<row>

<col id=”id”>Field-0001</col>

<col id=”element”>Temperature_Dry-bulb_temperature</col>

<col id=”unit”>Celsius</col>

<col id=”class”>java.lang.Double</col>

<col id=”decimal-precision”

class=”java.lang.Integer”>1</col>

<col id=”scale” class=”java.lang.Integer”>1</col>

</row>

<row>

<col id=”id”>Repeat-0001</col>

<col id=”element”>Repeat-0001</col>

<col id=”unit’></col>

<col id=”class” au.gov.bom.aifs.event.TTable</col>

<col id=”decimal-precision

class=”java.lang.Integer”></col>

<col id=”scale” class=”java.lang.Integer”></col>

</row>

</ttable>

</col>

</row>

<row>

<col >

<ttable id=”data”>

<row>

<col id=”Field-0001”>20.3</col>

<col id=”Repeat-0001”>

<ttable id=”Repeat-0001”>

<row>

<col id=”Repeat-0001-table>

<ttable id=”col-meta-data’>

<row>

<col id=”id”>Field-0002</col>

<col id=”element’>Cloud_type</col>

<col id=”unit”>Code table B 20 012</col>

<col id=”class”>java.lang.Integer</col>

<col id=”decimal-precision”

class=”java.lang.Integer”>0</col>

<col id=”scale”

class=”java.lang.Integer”>1</col>

</row>

</ttable>

</col>

</row>

<row>

<col id=Repeat-0001-data>

<ttable id=”data”

<row>

<col id=”Field-0002>31</col>

</row>

<row>

<col id=”Field-0002>28</col>

</row>

</ttable>

</col>

</row>

</tttable>

</col>

</row>

</tttable>

</col>

</row>

</ttable>

</tree-table-xml>

Examples of possible XML file structures

A.3.1 Generic versus Specific

The generic approach is to include the names of the forecast (or observed) parameters as data. An example would be to have elements like “parameter”, “name”, “unit” and “value” and express the mean sea level pressure as something like

 <parameter>

<name> MSLP </name>

<value> 1013.2 </value>

<unit> hPa </unit>

</parameter>

At the other extreme, almost everything can be expressed as differently named elements (or attributes), as in

<meanSeaLevelPressure unit=”hPa”>

1013.2

</meanSeaLevelPressure>

Similar tags would be used for the other 1000 or so parameters defined in the WMO manuals. Various approaches between these extremes are also possible.

If displayed by a browser or other application that stripped out all unrecognised markup, the two examples above would appear as “MSLP 1013.2 hPa” and “1013.2” respectively.

A.3.2 Use of Elements versus use of Attributes

It is possible to put nearly everything in elements, as in

<mslp>

<value> 1013.2 </value>

<unit> hPa </unit>

</mslp>

Alternatively, almost everything can be in attributes with elements used purely for structure, as in

<mslp value=”1013.2” unit=”hPa” resolution=”0.1”/>

If displayed by applications that ignore unrecognised markup, the latter approach results in very little, if anything being displayed.

A.3.3 References versus Repetition for shared data and metadata

If the more generic approaches mentioned in section 3.4.2 are used, it is also possible to put repeated data and metadata separately to the non-repeated data, as in:

<parm id=”mslp” unit=”hPa” name=”meanSeaLevelPressure”

resolution=”0.1”/>

<parm id=”T” unit=”Celsius” name=”2mAirTemperature”

resolution=”0.1”/>

<obs lat=”-32.2” lon=”150.1”>

<value id=”mslp”>1013.2 </value>

<value id=”T”> 27.3 </value>

</obs>

<obs lat=”-35.2” lon=”148.5”>

<value id=”mslp”>1017.4 </value>

<value id=”T”> 35.6 </value>

</obs>

and so on, where the (shared) unit and resolution attributes are factored out and linked by the values of the “id” attribute. This can substantially reduce file sizes, especially if large amounts of shared metadata are included. If the metadata (the “parm” elements above) can be included by reference to an external file or URI, larger reductions in file size are possible.

If this approach is combined with placing most of the data and metadata in elements rather than in attributes, then the result if the markup is ignored may be quite readable with the list of common metadata effectively forming a header describing the following data.

An alternative is of course to include all of the metadata or shared data with each element, as in

<obs lat=”-32.2” lon=”150.1”>

<mslp unit=”hPa” resolution=”0.1” >1013.2 </mslp>

<air-temp unit=”Celsius” resolution=”0.1”> 27.3 </air-temp>

</obs>

<obs lat=”-35.2” lon=”148.5”>

<mslp unit=”hPa” resolution=”0.1”>1017.4 </mslp>

<air-temp unit=”hPa” resolution=”0.1”> 35.6 </air-temp>

</obs>

� Refer to http://zowie.metnet.navy.mil/~spawar/XML/OMF.html

� See � HYPERLINK "http://www.wmo.ch/web/www/WDM/reports/ET-IDM-2001.html" ��http://www.wmo.ch/web/www/WDM/reports/ET-IDM-2001.html� for a recent report

� See http://www.wmo.ch/web/www/WDM/ET-IDM/Doc-5-1.html

� See the Tasmanian Government’s “FishOnline” web site: http://www.fishonline.tas.gov.au/

� See http://www.insidedhmtl.com/xml/weather/page1.asp

� See � HYPERLINK "http://www.w3.org/XML/" ��http://www.w3.org/XML/�. XML 1.0 was approved as a W3C Recommendation 10 February 1998 and revised 6 October 2000.

� A more detailed introduction is available at � HYPERLINK "http://www.javaworld.com/jw-04-1999/jw-04-xml_p.html" ��http://www.javaworld.com/jw-04-1999/jw-04-xml_p.html�

� Quoted from http://zowie.metnet.navy.mil/~spawar/JMV-TNG/XML/OMF.html

