Uncertainty Analysis

WMO TRAINING WORKSHOP ON METROLOGY FOR SOUTHWEST PACIFIC RA V ENGLISH SPEAKING COUNTRIES

Melbourne, Australia, 21-25 November 2011
What To Expect

• The subject is taught to Bureau staff by Australia’s National Measurement Institute over 3 days!
• At the end of this session you will be able to:
 • Understand the need for uncertainty analyses compliant with the ISO-GUM.
 • Read an uncertainty analysis and understand it.
 • Understand the process used to produce an Uc analysis.
 • Produce simple uncertainty analyses.
ISO-GUM

• The International Standards Organization Guide to Uncertainty in Measurement.
• It is a guide – conventions are developing as laboratories develop more experience.
• It attempts to standardise practices for reporting uncertainties.
I am a Barometer

- In pairs roll 3 dice each
- Add up the dice
- Average the dice for each pair
- So what is the mean pressure?
- What is the expected pressure?
- A 95 cent bet
Predictability

- Bias – the distance between the average value and the true value
- Repeatability – the variation around the mean
- Uncertainty
Basic ISO Tenets

- The ISO approach is based on the following rules:
- Each uncertainty component is quantified by a standard deviation.
- All biases are assumed to be corrected and any uncertainty is the uncertainty of the correction.
- Zero corrections are allowed if the bias cannot be corrected and an uncertainty is assessed.
- All uncertainty intervals are symmetric.
Uncertainty

• Parameter, associated with the result of a measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand. (International Vocabulary of Basic and General Terms of Metrology)

• The degree of doubt about a measurement! You will always be correct in your measurement if you make your uncertainty estimate large enough!

• However; if the uncertainty becomes too large the measurement loses its value.
Why Bother?

• It is a requirement for most accreditation schemes (17025, national testing associations etc)
• It allows laboratories to reliably compare results.
• It allows your laboratory to identify the significant contributors to the measurement errors within your lab.
Example Inter-Comparison

- Spectral Radiometry – BIPM
- Note the error bars (95% confidence) are saying ‘we believe the true value lies between these points’
Inputs to the Uncertainty Analysis

- Components are grouped into two major categories, depending on the source of the data and not on the type of error, and each component is quantified by a standard deviation. The categories are:
 - Type A - components evaluated by statistical methods
 - Type B - components evaluated by other means (or in other laboratories)
The Process

- **Reported value involves measurements on one quantity.**
- Compute a type A standard deviation for random sources of error from:
 - Replicated results for the test item.
 - Measurements on a check standard.
- Make sure that the collected data and analysis cover all sources of random error such as:
 - Instrument imprecision
 - Day-to-day variation
 - Long-term variation
 - Resolution
 - Uncertainty of reference
- and bias such as:
 - Differences among instruments
 - Operator differences.
- Compute a standard deviation for each type B component of uncertainty.
- Combine type A and type B standard deviations into a standard uncertainty for the reported result using sensitivity factors.
- Compute an expanded uncertainty.
Standard Uncertainty

- **Standard Uncertainty**: Represent each component of uncertainty that contributes to the uncertainty of the measurement result by an estimated standard deviation u_i
- Termed **standard uncertainty**, equal to the positive square root of the estimated variance u_i^2.
- See plots opposite. Estimate the std dev. S_i.
- **Mean** = -1.51, $s = 2.22$
Types of Distributions

• Not everything has a normal distribution.
• Sometimes the distribution of a parameter is unknown and can only be guessed.
• Common distribution types are:
 • Gaussian – signal noise
 • Rectangular – for example water in a rain gauge
 • Triangular – used if you are sure of the end points and believe the mode occurs at zero.
Rectangular Distribution

- This is the most conservative estimate of uncertainty since it leads to the largest value of s.
- An actual example if the water in the siphon of a tipping bucket rain gauge at an particular time.

\[s_{\text{source}} = \frac{1}{\sqrt{3}} a \]
Triangular Distribution

- The triangular distribution leads to a less conservative estimate of uncertainty; i.e., it gives a smaller standard deviation than the uniform distribution.
- The calculation of the standard deviation is based on the assumption that the end-points, ± a, of the distribution are known and the mode of the triangular distribution occurs at zero.

\[s_{\text{source}} = \frac{1}{\sqrt{6}} a \]
• The normal distribution leads to the least conservative estimate of uncertainty; i.e., it gives the smallest standard deviation.

• The calculation of the standard deviation is based on the assumption that the end-points, $\pm a$, encompass 99.7 percent of the distribution.
Combining Uncertainties

- All uncertainty components (standard deviations) are combined by root-sum-squares to arrive at a 'standard uncertainty', u, which is the standard deviation of the reported value, taking into account all sources of error, both random and systematic, that affect the measurement result.
- Do not make the mistake of 'adding errors' – this is the old approach.
- Adding errors (i.e. adding s, rather than s^2) is equivalent to saying all of the sources of error are exactly correlated.
Creating a Measurement Model

• You need a model of the measurement in order to apply the mathematics.
• It’s not as terrifying as it sounds – the model can be quite simple.
• For example, if you were comparing a reference thermometer to a field thermometer then the model might be:
 • \(C = \text{Reference Temperature} - \text{Field Device Temperature} \)
• Note; \(C \) is the measurand, in this case the correction to the field thermometer’s temperature – not temperature.
• Setting up the model is the critical step – if the model is wrong the uncertainty analysis will be wrong.
• The simplest method for setting up the model is to follow the flow of information about the measurement.
Simple Measurement Model

- Calculate the uncertainty of an area;
- \(area = length \times width \)
- The formal propagation of error approach is to compute:
 - standard deviation from the length measurements
 - standard deviation from the width measurements
- and combine the two into a standard deviation for area using the approximation for products of two variables (ignoring a possible covariance between length and width)

\[
s_{area} = \sqrt{width^2 s_{length}^2 + length^2 s_{width}^2}
\]
The NMI3 method for calculating the pressure set by a piston gauge is given by equation (1). A description of each of the input parameters is covered in depth by the NMI3 and is not repeated here.

And the symbol definitions and units are given by:

- \(P \) Pressure under piston \(\text{Pa} \)
- \(P' \) Estimate of \(P \) \(\text{Pa} \)
- \(P_{\text{vac}} \) Pressure of the vacuum above the piston \(\text{Pa} \)
- \(\rho_a \) Density of the air above the piston \(\text{kg.m}^{-3} \)
- \(\rho_{\text{Mi}} \) Density of the individual load mass \(\text{kg.m}^{-3} \)
- \(\rho_p \) Density of air below the piston \(\text{kg.m}^{-3} \)
- \(g \) Local gravity \(\text{m.s}^{-2} \)
- \(M_i \) Mass of the individual load masses \(\text{kg} \)
- \(M_e \) Effective mass of the piston \(\text{kg} \)
- \(A_{0,20} \) The effective cross-section of the piston at 20 °C \(\text{m}^2 \)
- \(\lambda \) The pressure distortion coefficient \(\text{Pa}^{-1} \)
- \(\alpha_P \) Linear thermal expansion coefficient of the piston °C\(^{-1} \)
- \(\alpha_C \) Linear thermal expansion coefficient of cylinder °C\(^{-1} \)
- \(T \) Temperature of the piston cylinder °C
- \(h \) Height of reference point of barometer m

\[
P = \frac{\sum_{n} M_i g (1 - \frac{P_a}{\rho_{M_i}}) + M_e g}{A_{0,20} (1 + \lambda P') \left[1 + (\alpha_P + \alpha_C)(T - 20)\right]} + P_{\text{vac}} - h \rho_p g
\]
Typical Uncertainty Inputs

- Uncertainty of reference device used.
- The error associated with repeat measurements.
- The error resulting from the finite resolution of the measuring device and/or quantity being measured.
- The error introduced by variations in environmental conditions or by correcting for environmental conditions.
- The error introduced by digitizing an analog signal.
- The error introduced by the person making the measurements……..etc.
Type A Analysis

- Type A inputs are calculated from experimental data.
- Typically, a data stream is used to calculate a sample mean and standard deviation (x, s).
- The type of distribution may have to be assumed.
Type B Analysis

- A Type B evaluation of standard uncertainty is usually based on scientific judgment
- previous measurement data,
- experience of the behavior of instruments
- manufacturer's specifications
- data provided in calibration and other reports
- uncertainties assigned to reference data taken from handbooks.
- For a type B analysis the underlying distribution of experimental error is estimated.
- It is necessary to estimate the type of distribution
- A typical Type B input is the Uc from a calibration certificate.
Estimating σ

- For sparse data (< 50) the calculated std deviation may not be the best estimator of the population variance.
- Often the ‘semi-range’ is employed.
- That is; the highest sample value minus the lowest sample value is assumed to equal 4σ.

![Graph showing sample numbers versus error]
Degrees of Freedom

• The calculation of the degrees of freedom drives the uncertainty analysis in terms of confidence.
• The greater the degrees of freedom the higher your confidence in the parameter.
• The degrees of freedom are used to calculate the Coverage Factor.
Type B Degrees of Freedom

- When the distribution parameters have been estimated you have the problem of estimating the degrees of freedom.
- Most workers estimate the degrees of freedom using the following guide.
 - $V = 10$ Low confidence
 - $V = 50$ High confidence
 - $V = 100$ Very high confidence
- These values of v are input into the Uc analysis
Combining Degrees of Freedom

- Degrees of freedom are combined using the Welch-Satterwaite formula shown opposite.
- Note the formula contains the calculated uncertainties U_i and the combined uncertainty U_c.
- The formula has the effect of weighting the various degrees of freedom based on their components contribution to the combined uncertainty.
Sensitivity Analysis

- The mathematical model is examined to determine how sensitive the measurand is to variations in other parameters.
- The sensitivity coefficient shows the relationship of the individual uncertainty component to the standard deviation of the reported value for a test item.
- The sensitivity coefficient relates to the result that is being reported and not to the method of estimating uncertainty components where the uncertainty, \(u \), is

\[
u = \sqrt{\sum_{i=1}^{R} \alpha_i^2 s_i^2}
\]

- For example: suppose \(C = M_{\text{ref}} - M_{gh} \)
- This involves taking the partial derivative of the model with respect to the parameter of interest.
Numeric Sensitivity Analysis

- Numerical sensitivity analysis is easier and in some cases the only way to proceed due to the intractability of the mathematical model.
- It is done by making small variations in parameters and noting the effect on the measurand.
- Easily done in a spreadsheet.
Correlations

- So far it has been assumed that one parameter in the uncertainty analysis does no influence any other measured parameters.
- A typical example is the weighing of an object using fixed masses.
- There are standard techniques for handling correlations.
What’s in – What’s not?

- Generally a lab will account for any systematic errors; that is, the known offsets or biases in their instruments.
- If they are not known, or not accounted for, then they must be included in the uncertainty analysis.
- If they have been accounted for then they are not included.
- For example: in the top graph the uncertainty in voltage could be calculated between the blue lines if the drift was allowed for.
- In the second graph the uncertainty of the RTDs is quite low if their linearity is accounted for.
- If it isn’t then the uncertainty for any RTD is $0.12/4$ ie. The expected variability of the devices.
The Process

• Step 1 – Model the measurement
• Step 2 – List all error sources
• Step 3 – Characterise all error components
• Step 4 – Get components of standard uncertainty for measurand
• Step 5 – Calculate the combined standard uncertainty
• Step 6 – Calculate the expanded uncertainty
• Step 7 – State the result
The optical density (o.d.) of a fluid is given by:

\[\text{o.d.} = \varepsilon C l \]

(4.10)

\(\varepsilon \) is the extinction coefficient, \(C \) is the concentration coefficient of the absorbing species in the liquid, and \(l \) is the path length of the light. The best estimate of each quantity, standard uncertainty and degrees of freedom are as follows:

\(\varepsilon = 14.9 \text{ L mol}^{-1} \text{ mm}^{-1}; \ u(\varepsilon) = 1.2 \text{ L mol}^{-1} \text{ mm}^{-1}; \nu_{\varepsilon} = 5 \)

\(C = 0.042 \text{ mol L}^{-1}; \ u(C) = 0.003 \text{ mol L}^{-1}; \nu_{C} = 7 \)

\(l = 1.42 \text{ mm}; \ u(l) = 0.21 \text{ mm}; \nu_{l} = 8 \)

Determine,

a) the best estimate of the optical density, o.d.
b) the combined standard uncertainty
c) the effective degrees of freedom, \(\nu_{\text{eff}} \)
d) the coverage factor \(\nu_{\text{eff}} \text{ calculated in part c)} \) (assume that the level of confidence is 0.95).
The Process

- Step 1 – Model the measurement
- Step 2 – List all error sources
- Step 3 – Characterise all error components
- Step 4 – Get components of standard uncertainty for measurand
- Step 5 – Calculate the combined standard uncertainty
- Step 6 – Calculate the expanded uncertainty
- Step 7 – State the result
Using equation 4.2, this gives,

\[u_c^2(y) = u_1^2(y) + u_2^2(y) + u_3^2(y) = 0.05122 + 0.004029 + 0.01727 = 0.02642 \]

It follows that \(u_c = 0.1625 \)

c) To find the effective degrees of freedom, \(v_{eff} \), we use equation 4.9, such that,

\[v_{eff} = \frac{u_c^4(y)}{\sum_{i=1}^{N} \frac{u_i^4(y)}{v_i}} = \frac{(0.02642)^2}{(0.05122)^2 + (0.004029)^2 + (0.01727)^2} = 15.56 \text{ (round to 15)} \]

d) When the number of degrees of freedom is 15, the coverage factor for a level of confidence of 0.95 is 2.131 (see table 2 in appendix 1 of Kirkup (2002) for table of critical values for the \(t \) distribution)
Part of the hand-out cd is an Excel spreadsheet developed by the CSIRO. It allows the rapid calculation of 95% confidence limits. It is only as good as the information you put into it. Another method is @Risk. This is an add-on package for Excel and simulates probability distributions.
Table 1. – F_s/F_c uncertainty analysis of typical Berlin Athlete data for a Reference Normal spring.

<table>
<thead>
<tr>
<th>Component</th>
<th>Units</th>
<th>Distribution</th>
<th>U or a</th>
<th>Coverage k</th>
<th>df</th>
<th>u(l)</th>
<th>c(l)</th>
<th>u(l)c(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>%</td>
<td>normal</td>
<td>0.76</td>
<td>2.31</td>
<td>8</td>
<td>0.3290043</td>
<td>1</td>
<td>0.3290043</td>
</tr>
<tr>
<td>mass</td>
<td>%</td>
<td>normal</td>
<td>0.25</td>
<td>2</td>
<td>30</td>
<td>0.125</td>
<td>0.5</td>
<td>0.0625</td>
</tr>
<tr>
<td>drop height</td>
<td>%</td>
<td>normal</td>
<td>0.45</td>
<td>2</td>
<td>30</td>
<td>0.225</td>
<td>0.5</td>
<td>0.1125</td>
</tr>
<tr>
<td>conc. resol.</td>
<td>%</td>
<td>Rect</td>
<td>0.05</td>
<td>1.732</td>
<td>100000</td>
<td>0.0288684</td>
<td>1</td>
<td>0.0288684</td>
</tr>
<tr>
<td>conc. meas.</td>
<td>%</td>
<td>normal</td>
<td>1</td>
<td>2.78</td>
<td>4</td>
<td>0.3597122</td>
<td>1</td>
<td>0.3597122</td>
</tr>
<tr>
<td>samp. resol.</td>
<td>%</td>
<td>Rect</td>
<td>0.05</td>
<td>1.732</td>
<td>100000</td>
<td>0.0288684</td>
<td>1</td>
<td>0.0288684</td>
</tr>
<tr>
<td>samp. meas.</td>
<td>%</td>
<td>normal</td>
<td>1</td>
<td>2.78</td>
<td>4</td>
<td>0.3597122</td>
<td>1</td>
<td>0.3597122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FR</th>
<th>Uncertainty</th>
<th>Sums combined s.d.</th>
<th>Effective df</th>
<th>k</th>
<th>Expanded uncertainty</th>
<th>rounded</th>
<th>Uncertainty in FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>0.68</td>
<td>0.6206923</td>
<td>15.081178</td>
<td>2</td>
<td>1.3158676</td>
<td>1.32</td>
<td>0.92</td>
</tr>
<tr>
<td>40</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Spread Sheet

- The data is input into the spreadsheet
- The type of distribution
- The units

Do type B calculations here for u_i, c_i, v_i.

Expand table if required and insert values.

<table>
<thead>
<tr>
<th>Uncertainty Component</th>
<th>Units</th>
<th>Distribution Type</th>
<th>Evaluation Type</th>
<th>Range U or a</th>
<th>Divisor d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mV</td>
<td>Normal</td>
<td>A</td>
<td>1.00E-03</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Rectang.</td>
<td>B</td>
<td>3.00E-03</td>
<td>0.577350269</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>N</td>
<td>A</td>
<td>5.60E-03</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>R</td>
<td>B</td>
<td>3.00E-03</td>
<td>0.40824829</td>
</tr>
</tbody>
</table>
- Sensitivity factors come from the model.
- Degrees of freedom are calculated – \(n-1 \) for Type A, or estimated – Type B.

\[
S = \frac{V}{\sigma \psi (T_e^4 - T_s^4) + \sigma k (T_d^4 - T_e^4)}
\]

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>Standard. Uncertainty ((u_i))</th>
<th>Sensitivity factor ((c_i))</th>
<th>(c_i u_i)</th>
<th>((c_i u_i))^2</th>
<th>((c_i u_i))^4/(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0.001</td>
<td>1</td>
<td>0.001</td>
<td>0.000001</td>
<td>5.55556E-14</td>
</tr>
<tr>
<td>8</td>
<td>0.051961524</td>
<td>16</td>
<td>0.831384388</td>
<td>0.6912</td>
<td>0.05971966</td>
</tr>
<tr>
<td>19</td>
<td>0.0056</td>
<td>0.23</td>
<td>0.001288</td>
<td>1.65884E-06</td>
<td>1.44847E-13</td>
</tr>
<tr>
<td>100</td>
<td>0.007346469</td>
<td>5.1</td>
<td>0.00140454</td>
<td>0.00140454</td>
<td>1.97273E-06</td>
</tr>
</tbody>
</table>

SUMS | **\(0.692607199 \)** | **0.0597197** |

Combined uncertainty \(0.832230256\)

Effective degrees of freedom \(3.032604555\)

Coverage factor \(2.306004133\)

Expanded Uncertainty \(1.91912641\)
When reporting a measurement result and its uncertainty, include the following information in the report itself or by referring to a published document:

- A list of all components of standard uncertainty
- Their degrees of freedom
- The resulting value of U_c
- The components should be identified according to the method used to estimate their numerical values:
 - A. those which are evaluated by statistical methods
 - B. those which are evaluated by other means.
- A detailed description of how each component of standard uncertainty was evaluated.
- A description of how k was calculated
Using an Uc Analysis

- An uncertainty analysis can help you determine the factors that are making your measurements less certain (less accurate).
- Often as in the case below, one or two items are contributing the majority of the uncertainty.

![Bureau's Piston Gauge Uncertainty Contributors](image)
• Note: in the previous example the largest contributor to U_c is the pressure reading from the vacuum gauge.

• The U_c of pressure measurement within our lab can be most easily reduced by buying a vacuum gauge with a lower uncertainty.
References

