Traceability and Calibration of Weather Radar Reflectivity Measurements by Means of a Target Simulator

M. Schneebeli1, A. Leuenberger1, E. Tas2, O. Schreiber3, T. Pittorino3

1Palindrome Remote Sensing GmbH, Landquart, Switzerland
2Swiss Federal Institute of Metrology METAS, Wabern, Switzerland
3NTB Interstate Applied University of Technology Buchs, Buchs, Switzerland

WMO CIMO TECO, 8.10.2018, Amsterdam
Radar calibration is difficult

Sphere calibration

Manual maintenance

Sun calibration

Ground truth

Radar calibration with an RTS
Palindrome Radar Target Simulator (RTS)

- Generates a calibrated, virtual radar target
- Receives incoming radar pulses
- Every individual pulse is sampled and stored
- Pulses are sent back with predefined amplitude, Doppler shift and time delay
Measurement capabilities

Reflectivity

Pulse Amplitude

Antenna pattern

Doppler

Pulse Phase

Pulse Frequency

Radar calibration with an RTS
Calibration theory

\[Z_e = f(\sigma_b, \lambda, \theta, r) \]

- \(Z_e \): radar reflectivity
- \(\sigma_b \): radar cross section
- \(\lambda \): wavelength
- \(\theta \): half power beam width of radar antenna
- \(r \): distance to target

\[
\sigma_b = \frac{P_{\text{out}}}{S_{\text{in}}} = \frac{P_{\text{out}}A_{\text{eff}}}{P_{\text{in}}} = \frac{P_{\text{out}}G\lambda^2}{P_{\text{in}}4\pi}
\]

- \(S_{\text{in}} \): incoming power density on target
- \(P_{\text{out}} \): reflected power
- \(A_{\text{eff}} \): Effective antenna area
- \(G \): antenna gain

If the fraction between outgoing and incoming power is known, the RCS \(\sigma_b \) of a target is known precisely.
Calibration theory

\[Z_e = f(\sigma_b, \lambda, \theta, r) \]

- \(Z_e \): radar reflectivity
- \(\sigma_b \): radar cross section
- \(\lambda \): wavelength
- \(\theta \): half power beam width of radar antenna
- \(r \): distance to target

If the fraction between outgoing and incoming power is known, the RCS \(\sigma_b \) of a target is known precisely.

\[\sigma_b = \frac{P_{\text{out}}}{S_{\text{in}}} = \frac{P_{\text{out}} A_{\text{eff}}}{P_{\text{in}}} = \frac{P_{\text{out}} G \lambda^2}{P_{\text{in}} 4\pi} \]
Calibration with a target simulator

Analog up- / down-conversion, amplification
Analog ⇔ digital conversion
Digital up- / down-conversion
Signal processing
Calibration with a target simulator

Feedback loop with gain G_f

$\frac{P_{\text{out}}}{P_{\text{in}}} = f(G_f)$

G_f needs to be determined precisely.

Analog up- / down-conversion, amplification

Analog ⇔ digital conversion

Digital up- / down-conversion

Signal processing
Traceability to SI units

Vector network analyzer calibration kit → Vector Network Analyzer → Target Simulator Feedback loop → Power fraction at Target Simulator $\frac{P_{\text{out}}}{P_{\text{in}}}$ → Radar reflectivity

SI unit Meter
SI unit Watt
Reference attenuator

Calibration Kit
VNA measurements
Target simulator calibration unit
Network analyzer measurements

- High-precision measurements of feedback gain G_f
- Accuracy: below 0.1 dB
- Measurement of antenna gains in anechoic chambers
- Swiss Metrology Institution METAS is responsible for the calibration and traceability
Outdoor verification with Antennas

Measurement of the difference between the outgoing and incoming pulse power ΔP
Laboratory verification without antennas

Radar calibration with an RTS
Measurements during Olympics 2018

60DX calibration
- Distance: 2.1 km
- \(\Delta h: 100 \) m
- 3 observation days
- window scans

Long-term measurements with MXPol
- Distance: 13 km
- \(\Delta h: 700 \) m
- 40 observation days
- RHI scans

MXPol test measurements
- Distance: 5 km
- \(\Delta h: 0 \) m
- 1 observation day
- window scans
60DX calibration with 50 dBZ target

Reflectivity

- mean: 52.79
- std: 0.20

Centroid position

- mean: 231.77
- std: 0.01

Elevation [°]

- mean: 1.40
- std: 0.02

Time [minutes]
Conclusion

A target simulator provides a mean to calibrate and trace weather radar reflectivity measurements back to SI units.

Accuracy depends on the measurement precision of the feedback gain.

Outlook

- Certified commercial instrument available in 2019 for X- and C-band
- Extensive tests will be performed

Booth 9070