Second call for potential participation in the WMO Solid Precipitation Intercomparison Experiment (SPICE), scheduled to start in 2012 and last until 2014

Action required: That potential participants provide the requested information, no later than 15 March 2012

Dear Sir/Madam,

The first call for preliminary expressions of interest in participation in the WMO Solid Precipitation Intercomparison Experiment (SPICE) was contained in my letter to you of 2 November 2011. Unfortunately, owing to the introduction of the WMO’s new e-communication system, some of you may not have received that first letter. The first letter can be accessed from the CIMO intercomparisons webpage at: http://www.wmo.int/pages/prog/www/IMOP/intercomparisons.html. Please refer to it if you were one of those who did not receive it last November. Further information on SPICE is available in the Annex. It is not too late to express your interest in participating, should you wish to participate but have not already done so.

WMO Members and instrument manufacturers interested in participating in SPICE are now invited to provide further details of their proposed participation by completing the relevant questionnaire(s) that have been posted on the CIMO intercomparisons Website under SPICE (see the URL above). Should you wish to provide a test site for SPICE or instrumentation for participation in the intercomparison, please complete the appropriate questionnaire(s) (in the case of potential instrument providers, one questionnaire for each type of instrument you propose for inclusion). Should you wish to participate in some other capacity, please provide details of this desired participation.

The following points should be noted:

(a) As stated in the first letter, it is expected that both siting capacity and the overall capacity of the experiment will be limited, so no assurance can be given that all those interested in participating can be accommodated. Selection of participants will be made by the International Organizing Committee of SPICE (IOC-SPICE). It will be based on the perceived value to SPICE of the proposed participation, and will also be based on the completeness of the information provided in the questionnaires, so please provide all details requested;

To: Permanent Representatives (or Directors of Meteorological or Hydrometeorological Services) of Members of WMO (PR-6627)
 Mr Bruce Sumner, HMEI

cc: Members of the IOC-SPICE (for information)
 Members of CIMO Expert Team on Instrument Intercomparisons (for information)
 President of CIMO
(b) The main phase of SPICE will commence in 2012 and will continue for at least two complete northern winter seasons: participation for the full duration of the experiment will be expected of all participants;

(c) All participants will also be expected to abide by the agreed data protocols for the experiment and will be required to sign an agreement to this effect before commencement of participation.

Please forward your response to the WMO Secretariat as soon as possible, but no later than 15 March 2012.

May I once again take the opportunity to express my appreciation for your interest in, and contributions to, the activities of the Instruments and Methods of Observation Programme.

Yours faithfully

(J. Lengoasa)
for the Secretary-General
WMO SOLID PRECIPITATION INTERCOMPARISON EXPERIMENT (SPICE)
Mission Statement and Objectives

1. Mission Statement

To recommend appropriate automated field reference system(s) for the unattended measurement
of solid precipitation in a range of cold climates and seasons, and to provide guidance on the
performance of modern automated systems for measuring: (i) total precipitation amount in cold
climes for all seasons, especially when the precipitation is solid; (ii) snowfall (height of new fallen
snow); and (iii) snow depth.

To understand and document the differences between an automatic field reference system and
different automatic systems and between automatic and manual measurements of solid
precipitation using equally exposed/shielded gauges, including their siting and configuration.

2. Scope and Definition

Building on the results and recommendations of previous intercomparisons, the WMO Solid
Precipitation Intercomparison Experiment (SPICE) will focus on the performance of modern
automated sensors measuring solid precipitation. SPICE will investigate and report the
measurement and reporting of the following parameters:

With highest priority:

(a) Precipitation amount, over various time periods (minutes, hours, days, season), as a function
of precipitation phase (liquid, solid, mixed);

(b) Snow on the ground (snow depth); as snow depth measurements are closely tied to snowfall
measurements, the intercomparison will address the linkages between them.

With lower priority:

(c) Solid and mixed precipitation intensity.

As a key outcome, recommendations will be made to WMO Members, WMO Programmes,
manufacturers and the scientific community, on the ability to accurately measure solid precipitation,
on the use of automatic instruments, and the improvements possible. The results of the experiment
will help to inform those Members that wish to automate their manual observations.

An important aspect of this project will be to ensure that all available remotely sensed precipitation
data is collected and included as part of the intercomparison data base. However, analysis of these
data is beyond the scope of this intercomparison. The results of this intercomparison can later
contribute to improved spatial and temporal estimates of precipitation.

3. Background

Solid precipitation is one of the more complex parameters to be observed and measured by
automatic sensors. The measurement of precipitation has been the subject of a multitude of
studies, but there have been limited coordinated assessments of the ability and reliability of
automatic sensors to accurately measure solid precipitation. The WMO Solid Precipitation Measurement Intercomparison\(^1\) focused on the instruments in use in national networks at the time of the intercomparison, primarily manual methods of observation. The assessment of automatic sensors/systems for snow depth and snowfall measurement was not a central part of the study, and no intercomparison stations were included in the Arctic or Antarctic.

Since then, an increasing percentage of precipitation data used in a variety of applications have been obtained using automatic instruments and stations, including the measurement of snow depth and many new applications (e.g., climate change, nowcasting, water supply, complex terrain, avalanche warnings, etc.) have emerged. At the same time, many of the new techniques used for the measurement of solid precipitation are of non-catchment type, e.g. light scattering, microwave backscatter, mass and heat transfer, etc.

Additionally, during the development of proposals for satellite sensors to measure solid precipitation, the issue of validation and calibration of such products using *in-situ* measurements (network or reference stations) identified the availability of reliable measurements of solid precipitation at automatic stations as a key input in assessing measurements in cold climates.

The modern data processing capabilities, data management and data assimilation techniques provide the means for better assessment and error analysis.

4. Intercomparison Objectives

SPICE will report on the following key objectives:

I. Recommend appropriate automated field reference system(s) for the unattended measurement of solid precipitation. Define and validate one or more field references using automatic instruments for each parameter being investigated, over a range of temporal resolutions (e.g. from daily to minutes).

II. Assess/characterize automatic systems (both the hardware and the associated processing) used in operational applications for the measurement of Solid Precipitation (i.e. gauges as “black boxes”):
 a. Assess the ability of operational automatic systems to robustly perform over a range of operating conditions;
 b. Derive adjustments to be applied to measurements from operational automatic systems, as a function of variables available at an operational site: e.g., wind, temp, RH;
 c. Make recommendations on the required ancillary data, which would enable the derivation of adjustments to be applied to data from operational sites on a regular basis, potentially, in real-time or near real-time;
 d. Assess operational data processing and data quality management techniques;
 e. Assess the minimum practicable temporal resolution for reporting a valid solid precipitation measurement (amount, snowfall, and snow depth on the ground);
 f. Evaluate the ability to detect and measure trace to light precipitation.

III. Provide recommendations on best practices and configurations for measurement systems in operational environments:
 a. On the exposure and siting specific to various types of instruments;

b. On the optimal gauge and shield combination for each type of measurement, for different collection conditions/climates (e.g., arctic, prairie, coastal snows, windy, mixed conditions);

c. On instrument specific operational aspects, specific to cold conditions: use of heating, use of antifreeze (evaluation based on its hygroscopic properties and composition to meet operational requirements);

d. On instruments and their power management requirements needed to provide valid measurements in harsh environments;

e. On appropriate target(s) under snow depth measuring sensors;

f. Consideration will be given to the needs of remote locations, in particular those with power and/or communications limitations.

IV. Assess the achievable uncertainty of the measurement systems included in SPICE and the ability to effectively report solid precipitation:

a. Assess the sensitivity, uncertainty, bias, repeatability, and response time of operational and emerging automatic systems;

b. Assess and report on the sources and magnitude of errors including instrument (sensor), exposure (shielding), environment (temperature, wind, microphysics, snow particle and snow fall density), data collection and associated processing algorithms with respect to sampling, averaging, filtering, and reporting.

V. Evaluate new and emerging technology for the measurement of solid precipitation (e.g. non-catchment type), and their potential for use in operational applications.

VI. Configure and collect a comprehensive data set for further data mining or for specific applications (e.g., radar- and/or satellite-based snowfall estimation). Enable additional studies on the homogenization of automatic/manual observations and the traceability of automated measurements to manual measurements.

5. Deliverables

SPICE will provide reports on the intermediate and final results of the experiment covering the following aspects:

a. Recommendations of automatic field references systems, for the unattended measurement of the parameters evaluated;

b. Characterization of the performance of existing, new, and emerging technologies measuring solid precipitation, and their configurations, addressing the objectives of the intercomparison;

c. A comprehensive data set for legacy use, for further data mining;

d. Update of relevant chapters of the CIMO Guide (WMO-No. 8) and potential publications of WMO/ISO standards (under the WMO-ISO agreement, 2009);

e. Guidance to Members on transition to automation from manual observations of solid precipitation measurements;

f. Recommendations made to manufacturers on instrument requirements and improvements.

6. Instruments and Configurations to be considered

The experiment may include many instrument types, models and configurations identified as currently operational; as summarized in WMO CIMO IOM 102, Survey on National Summaries of Methods and Instruments for Solid Precipitation Measurement at Automatic Weather Stations, http://www.wmo.int/pages/prog/www/IMOP/publications-IOM-series.html. In addition, known
emerging technologies may be included, based on the recommendations of WMO Members, specifically:

- Weighing Gauges, Tipping Buckets, other storage gauges;
- Instruments employing emerging technologies e.g. laser, particle disdrometers, hot plate, spinning arm, vertically pointing radar, optical gauges, acoustic, precipitation video imaging, video camera;
- Wind shields: (type: e.g. Alter, Nipher, Tretyakov, Wyoming, Belford, wood), and configurations (single, double, small DFIR);
- Gauges equipped with heating in various configurations;
- Emerging trends: low-cost sensors, with (potential for) wide use.

7. **Duration of the Intercomparison**

Each intercomparison site will be operated for a minimum of two winter seasons.