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Summary and purpose of document
This document provides and introduction to some work being undertaken to see how performance monitoring ata can be used to more effectively manage and operate networks.




ACTION PROPOSED

The Meeting is invited to take notice of the findings reported in this document and to provide feedback on the contents. Also the Meeting should decide whether the document is suitable for publication as a separate IMOP report or whether information should be included in the CIMO guide in part or in full.


Overview
BACKGROUND 
Gathering performance monitoring data is an activity we all undertake but it is often seen as a side activity, and the data is never looked at beyond the alarm it sets off on a computerised display. At best it is looked during the design and development of new systems and then by and large forgotten. It can also be difficult to argue the case to keep such data flowing into an organisation, but like the tailings from a gold mine, this is metadata is a source of great wealth if processed correctly. Historical performance data, be it for manual or automated systems, is the source of baseline information that guides intelligent and efficient management of networks.
Organisations are being required to gather observations at lower cost and with fewer human resources, while maintaining or improving both the quality and quantity of data collected. Historically Australia, as in many countries, observation gathering was achieved through a distributed network of people who could be relied upon to monitor the observations collected, the condition of the equipment, and the location where the observations were collected. Over the last 20 years or more, there has been a shift from these manual processes to automated observation collection. This is been driven by improvements in technology, a desire and need for higher resolution data (both in space and time) and the intrinsic cost of operating manual observations. The revolution in automated observations is provided a wealth of knowledge, allowing us to understand the fine structure of phenomena at a relatively low cost, but it is also presenting challenges regarding maintaining the condition and quality of the interface of the instruments to the world.
There is another downside to automated observations. Knowing when an unusual observation is real or an aberration of the equipment can be difficult. Some instruments are susceptible to electrical interference or longer term drift, electronic equipment also tends to behave more idiosyncratically in the field than manual devices which are built on primary measurement processes. Knowing when equipment needs maintenance and ensuring instruments do not fall out of specification is a challenge for all network operators.
Australia
At the beginning of 1991 the Bureau of Meteorology Australia operated primarily a manual observation network with approximately 108 automated weather stations (AWS) in remote locations. There were an additional 50 sites where the Bureau had staffed stations that ran 24/7 and this was supplemented by a large network of cooperative synoptic stations reporting three hourly and volunteer stations reporting daily. A decade later the number of AWS had risen by more than 450 to 576 (See Figure 1.). As of today that number is over 750 and is set to rise rapidly over the next five years with increases in data from external sources.
An in-house metadata management database was developed called SitesDb to manage the meta-data. This database stores information related to both the observational and engineering requirements of the organisation; it includes information such as make, model and serial number of instruments; where it's located, when it was installed, who installed it, and where it is relative to other equipment at the site. It is also used to manage the maintenance and quality of both the site and the observations. Information such as photographs of the site, including panoramas, reports of issues raised by clients, and most importantly, for this discussion, data relating to the performance of equipment in the field is also gathered and stored chronologically. This allows us to understand the state of the instrumentation and the site at any time in its history.

[bookmark: _Ref460858384]Figure 1 – Growth Chart of Automated Weather Stations in the Australian Bureau of Meteorology surface network over the Period 1970 to 2013
Over 13,740 entries relating to inspections of electronic temperature equipment over the period November 1999 to April 2013 were extracted from the SitesDb database. These data form the basis of the analysis.
Analysis
Chronological for Network
Analysis of the 17 years of on arrival and on departure results from inspections shows that a small, but statistically significant bias in the temperature data. 
· On arrival error is 0.0218 +/- 0.0105°C 
· After inspection is 0.0173 +/- 0.0033° C.
This reduction in both the error and the uncertainty can be attributed to the inspection process. The inspector compares the field equipment with a high quality portable electronic reference, typically Hg in Glass precision thermometer up until late 2007 then Dostman IPRTs. During this process the series of observations are compared and if the sensors agree within 
· +/- 0.3°C no action is taken, 
· between 0.3 and 0.5°C the inspector access whether to leave the sensor in place or replace it with a new one. 
· if the differences are above 0.5°C the sensor will generally be replaced
Figure 2 Shows inspection data for all electronic sensors for the period August 1999 to December 2015 for both the before and after checks.
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[bookmark: _Ref485880585]Figure 2 - The Difference between the Sensor and Field Reference Instrument for both the before and after inspections over the period 1999 to 2015.
Analysis of the number of checks that are greater than 0.5°C is 
· on arrival  <2.5% 
· on departure <1.5%.
And the trend in each case was insignificant
· on arrival -4.14 x 10-6 +/- 1.73 x 10-6, r = 0.0004
· on departure 6.69 x 10-7 +/- 9.44 x 10-7, r= 3.7 x 10-5
Duration of Senor in the Field
Figure 3 displays the after checks as a function of the time the sensor has spent in the field. If the senses deteriorate over time we would expect to see either a trend in the data in the out years or an increase in the scatter. It appears that neither effect is present, indicating the senses remain within calibration until they fail outright.
Overall the number of checks with a difference greater than 0.5°C for this data was 1.5%, but examining the data this way we can see a cluster near the intersection of the axes. If we look just at results after less than one quarter in the field the failure rate rises to 3.7%. This indicates that greater care is needed at the time of installation to ensure the sensor is stable and operating well.
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[bookmark: _Ref485881000]Figure 3 - The Difference between the Sensor and Field Reference Instrument as a function of the length of time the sensor has been in the field in days.
Time between inspections senses
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[bookmark: _Ref485885069]Figure 4 The Difference between the Sensor and Field Reference Instrument as a function of the length of time between inspections of the sensor in the field in days.
Figure 4  is another way of looking at data to examine if the time between checks is showing any trends. We would expect that if there was an ageing profile in the senses this plot would show the most dramatic trending, however even the few inspections that were done more than 10 years apart show no trend at all. There is a cluster of inspections occurring at about 210 days which is an encouraging sign as it's only slightly higher than our target inspection rate the hundred and 80 days. 
The influence of the inspector
Given the errors seen in Figure 3 occur commonly at the time of installation they may also be related to who is undertaking the work. We have the information to analyse this also. Figure 4 redisplayed the data as the average error of the inspections as a function of who undertook the inspection. 
· The blue columns are the average difference between the sensor in the reference the individual inspectors
· The red columns are the average differences that are significantly different from zero at the 95% confidence interval. That is these are the inspectors whose process is highly repeatable.
· The green columns indicate the inspector's results whose mean is significantly greater than the pool of inspectors at the 95% confidence interval. This indicates these individuals may require additional training or experience.
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[bookmark: _Ref485881584]Figure 5 - Difference between the sensor in the field and the reference analysed by Inspector or Technician
Replotting the data relating the inspection difference against the number of days the staff member has worked in the field, shows a rapid increase in the quality of the inspections after approximately one year of experience in the field (Figure 5). 
The grey diamonds are all the inspection data as a function of time worked in the field, while the dark diamonds are just those who have less than a years' experience. The pink diamonds represent those inspectors whose average bias is significantly greater than the mean, they represent 10% of the inspectors. While the green diamonds are the inspection results, that both demonstrate a bias that is statistically significant and greater than overall uncertainty of 0.1°C, this represents 4% of all the data.
The more experienced inspectors or technicians provided more reliable metadata, and generally the reason for the outlier behaviour was determined to be driven by a single inspection where a sensor failed.
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[bookmark: _Ref485882484]Figure 6 - Difference between the sensor in the field and the reference analysed by Inspector or Technician's experience in the field

Uncertainty Analysis and Confirmation
The traceability the temperature measurements in the field is outlined in Table 1. The local primary temperature reference is triple point cells that are used to calibrate a number of working references. These working references are used to calibrate the Dostmann transfer standards that are used in the field, and for initial calibration of the field sensors in the laboratory. These result in a laboratory sensor calibration of 0.101°C, and verification of the sensor in the field to within 0. 325°C.

	Stage
	Comment
	95% Expanded Uncertainty
	Coverage Factor
	Unit

	Primary to Working
	Operational Uncertainty of Laboratory Working Reference (ITS90 Standards)
	19.3
	2.080
	mK

	Working to Dostmann
	Calibration of Dostmann Inspection IPRT by Working References
	0.101
	2.021
	°C

	Field by Working
	Calibration of Field IPRT by Working References
	0.101
	2.026
	°C

	Dostmann in field process
	Operation Uncertainty of Inspection of IPRT by Working References
	0.115
	2.030
	°C

	Verification in field by Dostmann
	Field Inspection of Field IPRT by Dostmann Inspection Reference
	0.325
	1.995
	°C


The analysis in the previous sections indicates these numbers are slightly generous with respect to the temperature uncertainty in practice the 95% confidence interval for the raw data is -0.27 to 0.3°C with a mean bias of 0.01°C. To investigate this further a series of models of the distribution of temperature verification data is given in Figure 6. This plot shows various normal distributions being used to model actual distribution of temperature verification data observed over the period 1999 to 2015. 
· The blue line is the raw data . 
· The first model is represented by the pink line and is a normal distribution curve with a standard deviation of 0.1932 °C and central mean of 0.0179°C. These values were derived from the overall mean offset and standard deviation of the overall dataset. This has a residual sum of squares of the fit which of 78 and does not represent the underlying distribution of the data well, being significantly broader than the original data. 
· The second model, orange line, was fitted using the laboratory uncertainty of 0.101° C with the estimated offset of 0.0621°C which gives an improved fit to the data RSS to 14.5. While significantly better than model 1 this fit under estimates the data in the wings of the curve. 
· The third model, green line, assumes there are two sources of uncertainty creating distribution measured. These components are additive and consist of the uncertainty of the sensor itself 0.073°C and that of the measurement process 0.159°C both centred on mean of 0.062°C. This model reduced the fit error to 3.6 which is a significant improvement. It reflects the shape of the distribution better than either of the other models and results minimal residual.
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[bookmark: _Ref485883832]Figure 7 - Model of temperature uncertainty data related to inspections
These results appear to support the approach that if it isn't broken you probably shouldn't fix. By leaving the senses in the field and simply checking them, rather than changing them or repairing them, the data demonstrates that senses themselves are maintaining the same calibration over periods of decades in the field. The model used to fit the distribution of the inspection data is consistent with the independently derived uncertainty budget. This is based on calibration data from work in a laboratory, tests and laboratory on the repeatability of comparison in the screen and a small allowance for the field conditions. It is possible to argue that this data is therefore over estimating the uncertainty of the measurement in the field if we exclude the bias of the screen.

Statistical process control - SKEWART Tests
The analysis in the previous section has focused on the compliance with a specification, that is has the sensor or test failed a specification. It informs the analyst of a failure but does not necessarily provide guidance on whether the failure is a "one off", a "statistical fluke" or the sign of a more fundamental issue. To determine if the process is under control a "Statistical Process Control" Chart (R. E. DeVor, 1992)
These processes use the natural variability and consistency of noise in a system to identify changes within that system. To this end it's very powerful predictive tool and can demonstrate issues long before traditional uncertainty analysis would provide confirmation of a problem. The techniques have been widely used in industry since the mid 1900s. 
Series is test conditions are developed based on the initial variability of the system and this allows tracking for a system going out of control before it goes out of specification. 
[image: ]
[bookmark: _Ref485885991]Figure 8 Statistical Process Control Chart of the Mean of a 30 sample batches
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[bookmark: _Ref485885995]Figure 9 - Statistical Process Control Chart of the Range of a 30 sample batches
The example shown in Figure 8 and Figure 9 are of this same inspection dataset. For the mean data over the period April 2003 to June 2008 mean is 0.055°C, compared to 0.002°C and 0.001°C for the periods 1998 to 2002 and 2010 to 2013 respectively. A number of critical changes in the calibration and traceability process are known to have occurred coincident with change in the mean. In January 2005 seven out of every nine Hg in Glass field reference thermometers were failed calibration checks on arrival. The issues continued through 2007 resulting in the Hg thermometers being replaced with Dostmann electronic standards from late 2007. Further analysis indicates that the issue with faulty Hg in glass thermometers may have started as early as mid-2002 as can be seen from the pale blue Dots. The shift in the mean for the period from June 2002 to late 2004 was 0.027°C.
Looking at the range data graph there are 15.8% of the sample ranges that indicate a special cause fault. At least half of these (7.9%) are the result of senses that were faulty and not changed in the field. There is no evidence in the range chart of the contamination of the traceability seen in the mean control chart. This indicates the issue with the mercury in glass thermometers only affected the offset and not the variability of the data.
Conclusions and recommendations
Performance data is gold to anyone who is managing a network but we tend to undervalue it. It can tell us what frequency we should be calibrating our equipment, whether our calibration processes are working properly, how their varying from region to region, and whether particular instrument types are performing better than others. In an age of financial pressures this is no longer something we can ignore and we need to be looking at ways we can make this easier for our members to come to grips with.
The bidirectional analysis of temperature uncertainty is in Australia would indicate that excluding the screen by this we may well be able to claim an uncertainty of at least 0.3°C in the field.
Consideration be given to inclusion in the CIMO guide of an overview of Statistical Process Control and Skewhart Charts as a process and performance management tool for network managers and RIC's.
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