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2. Objectives and scope

A key objective of the SPICE Data Analysis Team (DAT) is the derivation of reference datasets from measurements obtained using automatic precipitation gauges in specified configurations. Either Geonor T-200B or OTT Pluvio2 gauges may be employed as references in a Double Fence Intercomparison Reference (DFIR) shield (‘R2’ reference), single-Alter shield (‘R3’ reference, gauge 1 of 2), and/or unshielded configuration (‘R3’ reference, gauge 2 of 2). The time resolution of precipitation measurements from reference gauges is either 6 seconds or 1 minute, depending on the site and installation configuration.  

As first steps toward establishing the methodology for deriving reference datasets, the SPICE DAT has focussed on: (1) filtering raw precipitation measurements, to remove noise and outliers; and (2) compensating for any systematic artefacts present in the precipitation datasets. Efforts to date have employed primarily 6 s data, which provide the most ‘raw’ representation of the measurements, and hence provide a fundamental basis for the investigation of methods to be applied to datasets with lower temporal resolution.  Preliminary work has also been conducted with regard to the derivation of reference observations at different temporal resolutions.
Key aspects of the approach used in this work are detailed in Section 3, with results and related discussion from the investigations on data filtering and artefact compensation in sections 4 and 5, respectively. Initial work on deriving reference observations at different temporal resolutions is described in Section 6. A summary of results and proposals for the methodology to be employed in deriving the reference datasets are provided in Section 7, along with avenues for future work.

3. Approach

The investigations of data filtering and artefact compensation were conducted using a combination of selected datasets from SPICE measurement sites and artificial datasets generated specifically for DAT use. The former were chosen to demonstrate noise and artefacts present in real data, and provide a test bed for the initial assessment of filtering/compensation methods. The latter were generated for known precipitation accumulations and intensities, providing a frame of reference for the quantitative comparison of filtering methods.

3.1. Site datasets

A request for datasets was issued to SPICE site managers, asking for precipitation measurements from gauges in reference configurations in a variety of conditions: no precipitation, light precipitation, and precipitation of higher intensity. Site managers were encouraged to send data for any strange or interesting events, in an attempt to identify isolated or extreme cases for testing filtering/compensation methods.

Data from Geonor gauges in reference configurations were provided for Bratt’s Lake (1 min resolution), CARE (6 s resolution), Haukeliseter (1 min resolution), and Marshall (6 s resolution) sites. Data from Pluvio2 gauges in reference configurations were provided for Sodankyla (6 s resolution) and Weissfluhjoch (10 min resolution) sites.  
3.2. Artificial datasets  

Quantitative assessment of filter performance on precipitation datasets is confounded by the combined influence of precipitation, noise, and artefacts in measurement data; that is, it is difficult to disentangle these factors in order to determine the contribution from precipitation only (‘the truth’). Insight can be gained from periods without precipitation (‘the truth’ = zero precipitation), but even in these cases, the superimposition of noise and artefacts can complicate the assessment. 

To allow quantitative assessment of filter performance over the full range of expected precipitation conditions, artificial precipitation datasets were generated for intensities ranging from very light (0.6 mm/hr) to very heavy (30 mm/hr). Two scenarios were considered for each intensity: (1) a continuous, linear increase in accumulation at the specified intensity (‘linear’ scenario); and (2) step, or interval, increases in accumulation, with 10 x 1 min linear increases in accumulation separated by 1 min periods without precipitation (‘step’ scenario). The step scenario provides an avenue for testing the dynamic response of the filtering method, and was used as the primary means of filter assessment.

Filter performance was tested using ‘real’ noise, in order to avoid any inherent biases associated with assuming a functional form to describe the noise (e.g. a Gaussian filter would be expected to perform well if a Gaussian function was used to generate the noise for the dataset). Approximately 19500 data points (6 s temporal resolution), or 32.5 hours of data, were selected from a Geonor gauge at CARE during four, non-precipitating events. A histogram was generated from the compiled values, representing the ‘noise distribution.’ For each data point in the artificial dataset, a noise value was selected from the noise distribution using weighted random sampling with replacement (meaning that the same noise value could be selected more than once) and added to the value for that specific data point. 

The artificial datasets without noise are referred to as ‘clean’ datasets, while those for which noise has been added are referred to as ‘noisy’ datasets. Filter performance on the noisy datasets can be assessed by comparing the filtered outputs with the corresponding clean datasets (for same precipitation intensity and scenario).

4. Data filtering

4.1. Results from site datasets: Geonor gauges

Using the site datasets for Geonor gauges outlined in Section 3.1, a variety of filtering methods were tested: maximum/minimum value filters, removing points above/below set thresholds; a data ‘jump’ filter, to remove points or series of points if the rate of change exceeds a set threshold; moving average filters of varying width; median average filters of varying width; Gaussian filters operating in both the time and frequency domains; and a Savitzky-Golay filter (3rd order polynomial). Site datasets for Pluvio2 gauges were not available for testing at this stage of the investigation; these datasets are considered separately in Section 4.3.
A combination of maximum/minimum value filter and data jump filter was identified as an effective ‘pre-filtering’ method, which could be applied to any dataset if appropriate thresholds were identified. Qualitative assessment of filter performance indicated that the Gaussian methods were particularly effective; this was supported by variance-based comparisons and root mean square error (RMSE) comparisons (the latter for non-precipitating events, only). The specific frequency-domain Gaussian filter tested performed poorly when gaps were present in datasets. Any ‘filling in’ of values to circumvent this issue would necessarily introduce artificial values that could not be considered as part of the intercomparison. Accordingly, only time-domain Gaussian filters, which are not impacted negatively by such gaps, were considered further in the assessment.

Members of the DAT indicated that they generally employ moving average filters with 5 or 10 minute filter widths. This prompted the use of artificial datasets as a means of quantitatively comparing the moving average and Gaussian approaches and optimizing the associated filter parameters. 
4.2. Results from artificial datasets

Moving average and Gaussian filters with widths of 1, 2, 5, and 10 minutes were used to filter ‘noisy’ artificial precipitation datasets with intensities of 0.6, 1.8, 3, 6, 10, and 30 mm/hr in both ‘linear’ and ‘step’ scenarios (Section 3.2). The standard deviation of the Gaussian distribution used in the corresponding filter was tested at values equivalent to the filter width, 1/2 of the filter width, and 1/6 of the filter width. Filter performance was assessed by finding the root mean square error (RMSE) of the filtered output relative to the corresponding ‘clean’ dataset.

For both filter methods, the lowest RMSE values (indicating the best filter performance) were obtained for longer filter widths at low intensities, and for shorter filter widths at higher intensities. These results were observed for both the ‘linear’ and ‘step’ scenarios. A filter width of 2 minutes was found to perform reasonably well for all intensities, effectively removing noise while remaining sufficiently short to avoid ‘smoothing out’ small precipitation features. Filter performance was similar for the moving average and Gaussian approaches, the latter with standard deviations equivalent to the filter width or 1/2 of the filter width. 
4.3. Results from site datasets: Pluvio2 gauges

As the artificial datasets were derived from Geonor data, the results are applicable to data from these gauges only. Testing on site datasets from Pluvio2 gauges indicated that moving average and Gaussian approaches with 2 minute filter widths performed well in low-wind environments (Sodankyla). 

To test filter performance for Pluvio2 data in higher wind environments, data were obtained for a gauge under test at CARE. Wind noise was observed to be of lower frequency for this Pluvio2 gauge than typically observed for Geonor gauges. This was attributed to differences in the sensing element and its configuration between the two gauge types – Pluvio2 gauges with a load cell fixed beneath the bucket, and Geonor gauges with the bucket suspended from vibrating wire transducers. Longer filter widths, between 8 and 10 minutes, were found to effectively remove Pluvio2 wind noise when implemented in both moving average and Gaussian filters (with standard deviations equal to or 1/2 the filter width). The caveat of using this approach for Pluvio2 data is the potential to ‘smooth out’ precipitation features over smaller temporal scales.
5. Artefact compensation

The site datasets were filtered using the procedures outlined in Section 4, allowing for the identification of any residual errors, or ‘artefacts,’ in the measurement data. In some of the Geonor datasets, ‘saw-tooth’ features were evident, which were attributed to errors in the configuration or functioning of specific transducers/gauges. In some of the Pluvio2 datasets, small ‘drop-offs’ in signal were observed, resulting in numerous small spikes below the main accumulation curve. These drop-offs were easily filtered out using a data-jump filter (see Section 4.1). The cause of these features was unclear, but possibly related to the gauge configuration and/or installation.

A prominent feature in datasets for both gauge types was low-frequency variations related to solar heating of the gauges. These systematic errors have been addressed in different ways for Geonor and Pluvio2 gauges, as described below.

For Geonor gauges, Duchon (Bulletin of the American Meteorological Society, 2004) proposed the use of temperature coefficients to mitigate the influence of solar radiation on measurements from vibrating wire transducers. These coefficients are determined from linear fits to the accumulation-temperature relationship over 24 hour periods without precipitation. The 24 hour period is selected to capture the diurnal nature of the ambient temperature dependence resulting from the daily solar cycle. The coefficients are negative, with typical values of approximately -0.1 mm/10 °C. The negative nature of the coefficients raises concerns about the potential reporting of false precipitation for cases in which the onset of precipitation is accompanied by a decrease in temperature. 

This approach to the characterization of temperature dependence for application to compensation is explored for Geonor test data in Section 5.1. Caveats associated with this approach include the following: (1) the magnitude of temperature coefficients vary with the amount of precipitation in the bucket; (2) the magnitude of coefficients vary with the intensity of solar radiation (influenced by solar elevation, azimuth angles); (3) coefficients are transducer-specific, and so need to be determined separately for each transducer, for each Geonor gauge; and (4) the use of ambient temperature in the determination of coefficients does not capture the root cause of the observed variability – the temperatures of the vibrating wire transducers, which are not measured by Geonor gauges, and may vary significantly from ambient. 

Pluvio2 gauges, on the other hand, have built-in, static temperature correction, applied in full to non real-time gauge outputs (e.g., Accumulation NRT), and in part to the real-time bucket weights (Bucket RT). Each gauge is calibrated as a complete and independent unit; hence, the temperature dependence of gauges may differ, and it is not possible to swap load cells between gauges. The temperature of the sensing element (load cell) is monitored and output, providing a potential avenue for temperature compensation by the derivation and application of temperature coefficients, as considered above for Geonor gauges. This method was investigated using test data from Pluvio2 gauges; key findings are outlined in Section 5.2.  
5.1. Temperature compensation: Geonor gauges

Temperature coefficients were determined using test data from CARE over a non-precipitating period and applied to compensate for temperature variations during a light precipitation event a few days later. This approach was shown to reduce the magnitude of fluctuations in precipitation amount resulting from solar heating during the event. Given the variation of temperature coefficients with bucket weight, application of this method on a broader scale would require new coefficients to be computed periodically (during periods without precipitation) for use during subsequent precipitation events.

5.2. Temperature compensation: Pluvio2 gauges
Investigations of the Bucket RT – load cell temperature relationship for the purpose of deriving temperature coefficients (similar to the approach outlined in Section 5.1) indicate a non-linear relationship between these parameters over the course of a day. Over multiple days, hysteresis is observed in the Bucket RT – load cell temperature relationship, precluding temperature compensation using this method. However, comparisons with Accumulation NRT data indicate that the Pluvio2 firmware effectively compensates for temperature variations; the caveat in this case is that the details of the temperature compensation procedure are proprietary.

6. Application to longer temporal resolutions

An important question with regard to reference observations is: what is the optimum, or ‘best,’ time scale over which to report precipitation measurements? To answer this question, it is first necessary to determine how best to proceed from 6 s or 1 min data to longer temporal resolutions, and to assess the impact of filtering and temperature compensation when moving to these longer time scales.  

Preliminary work in this regard used 6 s data from a Geonor gauge at CARE to generate the following datasets for comparison. Note that ‘averaging’ in each of the descriptions below refers to a mathematical average over the stated period, with the time stamp applied at the end of the period (i.e. each 1 min value refers to the average over the preceding 1 min).

a) ‘Filtered – Averaged’: 6 s data were filtered (Gaussian, 2 min filter width, 1 min standard deviation), then averaged over 1 min, 2 min, 5 min, 10 min, 30 min, and 60 min.

b) ‘Filtered – Temperature compensated – Averaged’: same as above, but with temperature compensation (as in Section 5.1) applied prior to averaging.

c) ‘Averaged – Filtered’: 6 s data were averaged to 1 min, filtered (Gaussian, 4 min filter width, 2 min standard deviation), then averaged over 2 min, 5 min, 10 min, 30 min, and 60 min.

d) ‘Raw – Averaged’: raw, 6 s data were averaged to 1 min, 2 min, 5 min, 10 min, 30 min, and 60 min.

With the exception of the temperature compensated values, the results from all other datasets were similar; the ‘Raw-Averaged’ datasets showed more scatter during periods of higher winds, but these differences were small for temporal resolutions of 10 min and longer. The ‘Filtered – Temperature compensated – Averaged’ data differed from the other values; taking temperature variations into account may provide the ‘best’ representation of the measurements, but the caveats associated with temperature compensation (Section 5) introduce additional errors, and the resulting differences in magnitude over time may not be significant.

7. Proposed methodology and future work

Based on the work conducted to date, the following methodology is proposed for the derivation of reference datasets from precipitation measurements. Additional steps to be taken are indicated, where applicable.

7.1. Data filtering

A ‘pre-filter,’ comprising a max/min value filter and/or a data jump filter is proposed for all reference measurements to remove any outliers. Threshold values for each filter may vary depending on the particular gauge and configuration.

For 6 s data from Geonor gauges, a moving average or Gaussian filter is recommended, with a filter width of 2 min. A standard deviation of 1 min or 2 min is recommended for the Gaussian filter. Additional work is required to make recommendations for 1 min data, but initial investigations indicate that the same filters with widths of 4 min are effective.

For 6 s data from Pluvio2 gauges, a moving average or Gaussian filter is recommended, with a filter width of 8 – 10 min. As outlined in Section 4.3, longer filter widths are required relative to Geonor gauges, due to the lower frequency wind noise observed for Pluvio2 gauges. Shorter filter widths (2 min) can be used for low-wind environments. A standard deviation equal to the filter width, or 1/2 the filter width, is suggested for the Gaussian filter. Additional work is required to make recommendations for 1 min data. 

7.2. Temperature compensation

The derivation and application of temperature coefficients from linear fits to daily accumulation vs. temperature plots has been shown to be effective for Geonor measurements, but is complicated by several caveats (Section 5). Application of this approach on a broader scale would require quantification of the associated errors, and the continuous derivation of new coefficients to account for changes in bucket weight.

A similar approach cannot be applied for Pluvio2 gauges, given the hysteresis observed for the accumulation – temperature relationship. One option is to use the temperature compensated output from the gauge (Accumulation NRT), which makes use of the manufacturer’s static temperature calibration; however, this approach would stand against the stated project objective of deriving reference measurements from the raw bucket amounts.
Additional work is required to quantify the influence of temperature variations on precipitation amounts for each gauge type. With a better understanding of this influence, it may be possible to use thresholds to mitigate temperature effects, without necessarily being able to disentangle the contributions of precipitation and temperature to the measured bucket amounts.

7.3. Application to longer temporal resolutions
Given the preliminary nature of the work conducted to date, it is not possible to make an objective assessment or proposal in this regard. The initial results suggest that for light precipitation events, differences between filtered data that have been averaged and raw data that have been averaged are not significant at temporal resolutions of 10 min and longer. Temperature compensation appears to offer the avenue for most significant influence on the reference observations, but as noted above, there are still outstanding questions related to its implementation and influence. 
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