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CHAPTER 9. MEASUREMENT OF VISIBILITY 

9.1 GENERAL 

9.1.1 Definitions 

Visibility has traditionally been defined for meteorological purposes as a quantity to be estimated 
by a human observer, and observations made in that way are widely used. However, the 
estimation of visibility is affected by many subjective and physical factors. The essential 
meteorological quantity, which is the transparency of the atmosphere, can be measured 
objectively and is represented by the meteorological optical range (MOR). 

The meteorological optical range is the length of path in the atmosphere required to reduce the 
luminous flux in a collimated beam from an incandescent lamp, at a colour temperature of 
2 700 K, to 5 % of its original value. The luminous flux is being evaluated by means of the 
photometric luminosity function of the International Commission on Illumination (CIE) which 
describes the average spectral sensitivity of human visual perception of brightness (see 9.4.1).  

Visibility, meteorological visibility (by day) and meteorological visibility at night1 are defined as the 
greatest distance at which a black object of suitable dimensions (located on the ground) can be 
seen and recognized when observed against the horizon sky during daylight or could be seen and 
recognized during the night if the general illumination were raised to the normal daylight level 
(WMO, 1992a). 

Visual range (meteorological): Distance at which the contrast of a given object with respect to its 
background is just equal to the contrast threshold of an observer (WMO, 1992a). 

Airlight is light from the sun and the sky which is scattered into the eyes of an observer by 
atmospheric suspensoids (and, to a slight extent, by air molecules) lying in the observer’s cone of 
vision. That is, airlight reaches the eye in the same manner as diffuse sky radiation reaches the 
Earth’s surface. Airlight is the fundamental factor limiting the daytime horizontal visibility for black 
objects, because its contributions, integrated along the cone of vision from eye to object, raise the 
apparent luminance of a sufficiently remote black object to a level which is indistinguishable from 
that of the background sky. Contrary to subjective estimates, most of the airlight entering 
observers’ eyes originates in portions of their cone of vision lying rather close to them. 

The following four photometric qualities are defined in detail in various standards, such as by the 
International Electrotechnical Commission (IEC, 1987): 

                                           
1 To avoid confusion, visibility at night should not be defined in general as “the greatest distance at which lights of specified 

moderate intensity can be seen and identified” (see the Abridged Final Report of the Eleventh Session of the Commission 

for Instruments and Methods of Observation (WMO-No. 807)). If visibility should be reported based on the assessment of 

light sources, it is recommended that a visual range should be defined by specifying precisely the appropriate light 

intensity and its application, like runway visual range. Nevertheless, at its eleventh session CIMO agreed that further 

investigations were necessary in order to resolve the practical difficulties of the application of this definition. 
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(a) Luminous flux (symbol: F (or Φ); unit: lumen) is a quantity derived from radiant flux by 
evaluating the radiation according to its action upon the International Commission on 
Illumination standard photometric observer; 

(b) Luminous intensity (symbol: I; unit: candela or lm sr–1) is luminous flux per unit solid angle; 

(c) Luminance (symbol: L; unit: cd m–2) is luminous intensity per unit area; 

(d) Illuminance (symbol: E; unit: lux or lm m–2) is luminous flux per unit area. 

The extinction coefficient (symbol σ) gives the extent to which the luminous flux of a collimated 
beam, emitted by an incandescent source at a colour temperature of 2 700 K, is reduced while 
travelling the length of a unit distance in the atmosphere. The coefficient is a measure of the 
attenuation due to both absorption and scattering. 

The luminance contrast (symbol C) is the ratio of the difference between the luminance of an 
object and its background and the luminance of the background. 

The contrast threshold (symbol ε) is the minimum value of the luminance contrast that the human 
eye can detect, namely, the value which allows an object to be distinguished from its background. 
The contrast threshold varies with the individual. 

The illuminance threshold (symbol Et) is the smallest illuminance, required by the eye, for the 
detection of point sources of light against a background of specified luminance. The value of Et, 
therefore, varies according to lighting conditions. 

The transmission factor (symbol T) is defined, for a collimated beam from an incandescent source 
at a colour temperature of 2 700 K, as the fraction of luminous flux which remains in the beam 
after traversing an optical path of a given length in the atmosphere. The transmission factor is 
also called the transmission coefficient. The terms transmittance or transmissive power of the 
atmosphere are also used when the path is defined, that is, of a specific length (for example, in 
the case of a transmissometer). In the latter case, T is often multiplied by 100 and expressed in 
%. 

An aerodrome is a defined area on land or water (including any buildings, installations and 
equipment) intended to be used either wholly or in part for the arrival, departure and surface 
movement of aircraft (International Civil Aviation Organization, 2016).  

9.1.2 Units and scales 

The meteorological visibility or MOR is expressed in metres or kilometres. The measurement range 
varies according to the application. While for synoptic meteorological requirements, the scale of 
MOR readings extends from below 100 m to more than 70 km, the measurement range may be 
more restricted for other applications. This is the case for civil aviation, where the upper limit may 
be 10 km. This range may be further reduced when applied to the measurement of runway visual 
range representing landing and take-off conditions in reduced visibility. Runway visual range is 
required from 50 m or below, to 2 000 m or above and is calculated from MOR using amongst 
other variables the runway light intensity and the background luminance (see Volume III, 
Chapter 2). For other applications, such as road or sea traffic, different limits may be applied 
according to both the requirements and the locations where the measurements are taken. 

The errors of visibility measurements increase in proportion to the visibility, and measurement 
scales take this into account. This fact is reflected in the code used for synoptic reports by the use 
of three linear segments with decreasing resolution, namely, 100 to 5 000 m in steps of 100 m, 
6 to 30 km in steps of 1 km, and 35 to 70 km in steps of 5 km. This scale allows visibility to be 
reported with a better resolution than the accuracy of the measurement, except when visibility is 
less than about 1 000 m. 
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9.1.3 Meteorological requirements 

The concept of visibility is used extensively in meteorology in two distinct ways. First, it is one of 
the elements identifying air-mass characteristics, especially for the needs of synoptic meteorology 
and climatology. Here, visibility must be representative of the optical state of the atmosphere. 
Secondly, it is an operational variable which corresponds to specific criteria or special applications. 
For this purpose, it is expressed directly in terms of the distance at which specific markers or 
lights can be seen. 

One of the most important special applications is meteorological services to aviation (see Volume 
III, Chapter 2). 

The measure of visibility used in meteorology should be free from the influence of extra-
meteorological conditions; it must be simply related to intuitive concepts of visibility and to the 
distance at which common objects can be seen under normal conditions. MOR has been defined to 
meet these requirements, as it is convenient for the use of instrumental methods by day and 
night, and as the relations between MOR and other measures of visibility are well understood. 
MOR has been formally adopted by WMO as the measure of visibility for both general and 
aeronautical uses (WMO, 2014). It is also recognized by the International Electrotechnical 
Commission (IEC, 1987) for application in atmospheric optics and visual signalling. 

MOR is related to the intuitive concept of visibility through the contrast threshold. In 1924, 
Koschmieder, followed by Helmholtz, proposed a value of 0.02 for ε. Other values have been 
proposed by other authors. They vary from 0.007 7 to 0.06, or even 0.2. The smaller value yields 
a larger estimate of the visibility for given atmospheric conditions. For aeronautical requirements, 
it is accepted that ε is higher than 0.02, and it is taken as 0.05 since, for a pilot, the contrast of 
an object (runway markings) with respect to the surrounding terrain is much lower than that of an 
object against the horizon. It is assumed that, when an observer can just see and recognize a 
black object against the horizon, the apparent contrast of the object is 0.05, and, as explained 
below, this leads to the choice of 0.05 as the transmission factor adopted in the definition of MOR. 

Accuracy requirements for MOR, runway visual range and background luminance are given in 
Volume I, Chapter 1. 

9.1.4 Measurement methods 

Visibility is a complex psycho-physical phenomenon, governed mainly by the atmospheric 
extinction coefficient associated with solid and liquid particles held in suspension in the 
atmosphere; the extinction is caused primarily by scattering rather than by absorption of the light. 
Its estimation is subject to variations in individual perception and interpretative ability, as well as 
the light source characteristics and the transmission factor. Thus, any visual estimate of visibility 
is subjective. 

When visibility is estimated by a human observer it depends not only on the photometric and 
dimensional characteristics of the object which is, or should be, perceived, but also on the 
observer’s contrast threshold. At night, it depends on the intensity of the light sources, the 
background illuminance and, if estimated by an observer, the adaptation of the observer’s eyes to 
darkness and the observer’s illuminance threshold. The estimation of visibility at night is 
particularly problematic. The first definition of visibility at night in 9.1.1 is given in terms of 
equivalent daytime visibility in order to ensure that no artificial changes occur in estimating the 
visibility at dawn and twilight. The second definition has practical applications especially for 
aeronautical requirements, but it is not the same as the first and usually gives different results. 
Both are evidently imprecise. 

Instrumental methods measure the extinction coefficient from which the MOR may be calculated. 
The visibility may then be calculated from knowledge of the contrast and illuminance thresholds, 
or by assigning agreed values to them. It has been pointed out by Sheppard (1983) that: 

strict adherence to the definition (of MOR) would require mounting a 

transmitter and receiver of appropriate spectral characteristics on two 

platforms which could be separated, for example along a railroad, until the 
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transmittance was 5 per cent. Any other approach gives only an estimate of 

MOR. 

However, fixed instruments are used on the assumption that the extinction coefficient is 
independent of distance. Some instruments measure attenuation directly and others measure the 
scattering of light to derive the extinction coefficient. These are described in 9.3. The brief 
analysis of the physics of visibility in this chapter may be useful for understanding the relations 
between the various measures of the extinction coefficient, and for considering the instruments 
used to measure it. 

Visual perception – photopic and scotopic vision 

The conditions of visual perception are based on the measurement of the photopic efficiency of the 
human eye with respect to monochromatic radiation in the visible light spectrum. The terms 
photopic vision and scotopic vision refer to daytime and night-time conditions, respectively. 

The adjective photopic refers to the state of accommodation of the eye for daytime conditions of 
ambient luminance. More precisely, the photopic state is defined as the visual response of an 
observer with normal sight to the stimulus of light incident on the retinal fovea (the most sensitive 
central part of the retina). The fovea permits fine details and colours to be distinguished under 
such conditions of adaptation. 

In the case of photopic vision (vision by means of the fovea), the relative luminous efficiency of 
the eye varies with the wavelength of the incident light. The luminous efficiency of the eye in 
photopic vision is at a maximum for a wavelength of 555 nm. The response curve for the relative 
efficiency of the eye at the various wavelengths of the visible spectrum may be established by 
taking the efficiency at a wavelength of 555 nm as a reference value. The curve in Figure 9.1, 
adopted by the International Commission on Illumination for an average normal observer, is 
therefore obtained. 

ELEMENT 1: Floating object (Automatic) 

ELEMENT 2: Picture inline fix size 

Element Image: 8_I_9-1_en.eps 

END ELEMENT 

Figure 9.1. Relative luminous efficiency of the human eye for monochromatic radiation. 
The continuous line indicates daytime vision, while the broken line indicates night-time 

vision. 

END ELEMENT 

Night-time vision is said to be scotopic (vision involving the rods of the retina instead of the 
fovea). The rods, the peripheral part of the retina, have no sensitivity to colour or fine details, but 
are particularly sensitive to low light intensities. In scotopic vision, maximum luminous efficiency 
corresponds to a wavelength of 507 nm. 

Scotopic vision requires a long period of accommodation, up to 30 min, whereas photopic vision 
requires only 2 min. 

Basic equations 

The basic equation for visibility measurements is the Bouguer-Lambert law: 

 0   xF F e   (9.1) 

where F is the luminous flux received after a length of path x in the atmosphere, F0 is the flux for 
x = 0 and σ is the extinction coefficient per unit length. Differentiating, we obtain: 
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1dF

F dx



   (9.2) 

Note that this law is valid only for monochromatic light, but may be applied to a spectral flux to a 
good approximation. The transmission factor is: 

 0T F F  (9.3) 

Mathematical relationships between MOR and the different variables representing the optical state 
of the atmosphere may be deduced from the Bouguer-Lambert law. The relationship between the 
transmission factor and MOR is valid for fog droplets, but when visibility is reduced by other 
hydrometeors (such as rain or snow) or lithometeors (such as blowing sand), MOR values should 
be treated with more care. 

From equations 9.1 and 9.3 we may write: 

 0/ xT F F e    (9.4) 

If this law is applied to the MOR definition T = 0.05, and setting x = P, where P denotes MOR, 
then the following may be written: 

 0.05 PT e    (9.5) 

Hence, the mathematical relation of MOR to the extinction coefficient is: 

    1 ln 1 0.05 3P      (9.6) 

where ln is the log to base e or the natural logarithm. When combining equation 9.4, after being 
deduced from the Bouguer-Lambert law, and equation 9.6, the following equation is obtained: 

    ln 0.05 lnP x T   (9.7) 

This equation is used as a basis for measuring MOR with transmissometers where x is, in this 
case, equal to the transmissometer baseline a in equation 9.14. 

Meteorological visibility in daylight 

The contrast of luminance is: 

 b h

h

L L
C

L


  (9.8) 

where Lh is the luminance of the horizon, and Lb is the luminance of the object. 

The luminance of the horizon arises from the airlight scattered from the atmosphere along the 
observer’s line of sight. 

It should be noted that, if the object is darker than the horizon, C is negative, and that, if the 
object is black (Lb = 0), C = –1. 

In 1924, Koschmieder established a relationship, which later became known as Koschmieder’s law, 
between the apparent contrast (Cx) of an object, seen against the horizon sky by a distant 
observer, and its inherent contrast (C0), namely, the contrast that the object would have against 
the horizon when seen from very short range. Koschmieder’s relationship can be written as: 

 0   x
xC C e   (9.9) 
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This relationship is valid provided that the scatter coefficient is independent of the azimuth angle 
and that there is uniform illumination along the whole path between the observer, the object and 
the horizon. 

If a black object is viewed against the horizon (C0 = –1) and the apparent contrast is –0.05, 
equation 9.9 reduces to: 

 0.05 xe   (9.10) 

Comparing this result with equation 9.5 shows that when the magnitude of the apparent contrast 
of a black object, seen against the horizon, is 0.05, that object is at MOR (P). 

Meteorological visibility at night 

The distance at which a light (a night visibility marker) can be seen at night is not simply related 
to MOR. It depends not only on MOR and the intensity of the light, but also on the illuminance at 
the observer’s eye from all other light sources. 

In 1876, Allard proposed the law of attenuation of light from a point source of known intensity (I) 
as a function of distance (x) and extinction coefficient (σ). The illuminance (E) of a point light 
source is given by: 

 2 xE I x e      (9.11) 

When the light is just visible, E = Et and the following may be written: 

     21 ln tx I E x     (9.12) 

Noting that P = (1/σ) · ln (1/0.05) in equation 9.6, we may write: 

     2ln 1 0.05 ln tP x I E x    (9.13) 

The relationship between MOR and the distance at which lights can be seen is described in 9.2.3, 
while the application of this equation to visual observations is described in 9.2. 

9.2 VISUAL ESTIMATION OF METEOROLOGICAL OPTICAL RANGE 

9.2.1 General 

A meteorological observer can make a visual estimation of MOR using natural or man-made 
objects (groups of trees, rocks, towers, masts, churches, lights, and so forth). 

Each station should prepare a plan of the objects used for observation, showing their distances 
and bearings from the observer. The plan should include objects suitable for daytime observations 
and objects suitable for night-time observations. The observer must also give special attention to 
significant directional variations of MOR during the assessment of visibility. 

Observations should be made by observers who have “normal” vision and have received suitable 
training. The observations should normally be made without any additional optical devices 
(binoculars, telescope, theodolite, and the like) and, preferably, not through a window, especially 
when objects or lights are observed at night. The eye of the observer should be at a normal height 
above the ground (about 1.5 m); observations should, thus, not be made from the upper storeys 
of control towers or other high buildings. This is particularly important when visibility is poor. 
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When visibility varies in different directions, the value recorded or reported may depend on the 
coding practises of the report. In synoptic messages, the lower value should be reported, but in 
reports for aviation the guidance in WMO (2014) should be followed. 

9.2.2 Estimation of meteorological optical range by day 

For daytime observations, the visual estimation of visibility gives a good approximation of the true 
value of MOR. 

Provided that they meet the following requirements, objects at as many different distances as 
possible should be selected for observation during the day. Only black, or nearly black, objects 
which stand out on the horizon against the sky should be chosen. Light-coloured objects or 
objects located close to a terrestrial background should be avoided as far as possible. This is 
particularly important when the sun is shining on the object. Provided that the albedo of the 
object does not exceed about 25 %, no error larger than 3 % will be caused if the sky is overcast, 
but it may be much larger if the sun is shining. Thus, a white house would be unsuitable, but a 
group of dark trees would be satisfactory, except when brightly illuminated by sunlight. If an 
object against a terrestrial background has to be used, it should stand well in front of the 
background, namely, at a distance at least half that of the object from the point of observation. A 
tree at the edge of a wood, for example, would not be suitable for visibility observations. 

For observations to be representative, they should be made using objects subtending an angle of 
no less than 0.5° at the observer’s eye. An object subtending an angle less than this becomes 
invisible at a shorter distance than would large objects in the same circumstances. It may be 
useful to note that a hole of 7.5 mm in diameter, punched in a card and held at arm’s length, 
subtends this angle approximately; a visibility object viewed through such an aperture should, 
therefore, completely fill it. At the same time, however, such an object should not subtend an 
angle of more than 5°. 

9.2.3 Estimation of meteorological optical range at night 

Methods which may be used to estimate MOR at night from visual observations of the distance of 
perception of light sources are described below. 

Any source of light may be used as a visibility object, provided that the intensity in the direction of 
observation is well defined and known. However, it is generally desirable to use lights which can 
be regarded as point sources, and whose intensity is not greater in any one more favoured 
direction than in another and not confined to a solid angle which is too small. Care must be taken 
to ensure the mechanical and optical stability of the light source. 

A distinction should be made between sources known as point sources, in the vicinity of which 
there is no other source or area of light, and clusters of lights, even though separated from each 
other. In the latter case, such an arrangement may affect the visibility of each source considered 
separately. For measurements of visibility at night, only the use of suitably distributed point 
sources is recommended. 

It should be noted that observations at night, using illuminated objects, may be affected 
appreciably by the illumination of the surroundings, by the physiological effects of dazzling, and by 
other lights, even when these are outside the field of vision and, more especially, if the 
observation is made through a window. Thus, an accurate and reliable observation can be made 
only from a dark and suitably chosen location. 

Furthermore, the importance of physiological factors cannot be overlooked, since these are an 
important source of measurement dispersion. It is essential that only qualified observers with 
normal vision take such measurements. In addition, it is necessary to allow a period of adaptation 
(usually from 5 to 15 min) during which the eyes become accustomed to the darkness. 

For practical purposes, the relationship between the distance of perception of a light source at 
night and the value of MOR can be expressed in two different ways, as follows: 
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(a) For each value of MOR, by giving the value of luminous intensity of the light, so that there is 
a direct correspondence between the distance where it is barely visible and the value of MOR; 

(b) For a light of a given luminous intensity, by giving the correspondence between the distance 
of perception of the light and the value of MOR. 

The second relationship is easier and also more practical to use since it would not be an easy 
matter to install light sources of differing intensities at different distances. The method involves 
using light sources which either exist or are installed around the station and replacing I, x and Et 
in equation 9.13 by the corresponding values of the available light sources. In this way, the 
Meteorological Services can draw up tables giving values of MOR as a function of background 
luminance and the light sources of known intensity. The values to be assigned to the illuminance 
threshold Et vary considerably in accordance with the ambient luminance. The following values, 
considered as average observer values, should be used: 

(a) 10–6.0 lux at twilight and at dawn, or when there is appreciable light from artificial sources; 

(b) 10–6.7 lux in moonlight, or when it is not yet quite dark; 

(c) 10–7.5 lux in complete darkness, or with no light other than starlight. 

Tables 9.1 and 9.2 give the relations between MOR and the distance of perception of light sources 
for each of the above methods for different observation conditions. They have been compiled to 
guide Meteorological Services in the selection or installation of lights for night visibility 
observations and in the preparation of instructions for their observers for the computation of MOR 
values. 

ELEMENT 3: Floating object (Automatic) 

Table 9.1. Relation between MOR and intensity of a just-visible point source for 
three values of Et 

TABLE: Table horizontal lines 

MOR 
Luminous intensity (candela) of lamps only 
just visible at distances given in column P 

P 
(m) 

Twilight 
(Et = 10–6.0) 

Moonlight 
(Et = 10–6.7) 

Complete 
darkness 

(Et = 10–7.5) 

100 0.2 0.04 0.006 

200 0.8 0.16 0.025 

500 5 1 0.16 

1 000 20 4 0.63 

2 000 80 16 2.5 

5 000 500 100 16 

10 000 2 000 400 63 

20 000 8 000 1 600 253 
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50 000 50 000 10 000 1 580 

END ELEMENT 

ELEMENT 4: Floating object (Automatic) 

Table 9.2. Relation between MOR and the distance at which a 100 cd point source is just 
visible for three values of Et 

TABLE: Table horizontal lines 

MOR 
Distance of perception (metres) of a lamp of 

100 cd as a function of MOR value 

P 
(m) 

Twilight 
(Et = 10–6.0) 

Moonlight 
(Et = 10–6.7) 

Complete 
darkness 

(Et = 10–7.5) 

100 250 290 345 

200 420 500 605 

500 830 1 030 1 270 

1 000 1 340 1 720 2 170 

2 000 2 090 2 780 3 650 

5 000 3 500 5 000 6 970 

10 000 4 850 7 400 10 900 

20 000 6 260 10 300 16 400 

50 000 7 900 14 500 25 900 

END ELEMENT 

An ordinary 100 W incandescent bulb provides a light source of approximately 100 cd. 

In view of the substantial differences caused by relatively small variations in the values of the 
visual illuminance threshold and by different conditions of general illumination, it is clear that 
Table 9.2 is not intended to provide an absolute criterion of visibility, but indicates the need for 
calibrating the lights used for night-time estimation of MOR so as to ensure as far as possible that 
night observations made in different locations and by different Services are comparable. 

9.2.4 Estimation of meteorological optical range in the absence of distant objects 

At certain locations (open plains, ships, and so forth), or when the horizon is restricted (valley or 
cirque), or in the absence of suitable visibility objects, it is impossible to make direct estimations, 
except for relatively low visibilities. In such cases, unless instrumental methods are available, 
values of MOR higher than those for which visibility points are available have to be estimated from 
the general transparency of the atmosphere. This can be done by noting the degree of clarity with 
which the most distant visibility objects stand out. Distinct outlines and features, with little or no 
fuzziness of colours, are an indication that MOR is greater than the distance between the visibility 
object and the observer. On the other hand, indistinct visibility objects are an indication of the 
presence of haze or of other phenomena reducing MOR. 
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9.2.5 Accuracy of visual observations 

General 

Observations of objects should be made by observers who have been suitably trained and have 
what is usually referred to as normal vision. This human factor has considerable significance in the 
estimation of visibility under given atmospheric conditions, since the perception and visual 
interpretation capacity vary from one individual to another. 

Accuracy of daytime visual estimates of meteorological optical range 

Observations show that estimates of MOR based on instrumental measurements are in reasonable 
agreement with daytime estimates of visibility. Visibility and MOR should be equal if the observer’s 
contrast threshold is 0.05 (using the criterion of recognition) and the extinction coefficient is the 
same in the vicinity of the instrument, and between the observer and objects. 

Middleton (1952) found, from 1 000 measurements, that the mean contrast ratio threshold for a 
group of 10 young airmen trained as meteorological observers was 0.033 with a range, for 
individual observations, from less than 0.01 to more than 0.2. Sheppard (1983) has pointed out 
that when the Middleton data are plotted on a logarithmic scale they show good agreement with a 
Gaussian distribution. If the Middleton data represent normal observing conditions, we must 
expect daylight estimates of visibility to average about 14 % higher than MOR with a standard 
deviation of 20 % of MOR. These calculations are in excellent agreement with the results from the 
First WMO Intercomparison of Visibility Measurements (WMO, 1990), where it was found that, 
during daylight, the observers’ estimates of visibility were about 15 % higher than instrumental 
measurements of MOR. The interquartile range of differences between the observer and the 
instruments was about 30 % of the measured MOR. This corresponds to a standard deviation of 
about 22 %, if the distribution is Gaussian. 

Accuracy of night-time visual estimates of meteorological optical range 

From Table 9.2 in 9.2.3, it is easy to see how misleading the values of MOR can be if based simply 
on the distance at which an ordinary light is visible, without making due allowance for the 
intensity of the light and the viewing conditions. This emphasizes the importance of giving precise, 
explicit instructions to observers and of providing training for visibility observations. 

Note that, in practice, the use of the methods and tables described above for preparing plans of 
luminous objects is not always easy. The light sources used as objects are not necessarily well 
located or of stable, known intensity, and are not always point sources. With respect to this last 
point, the lights may be wide- or narrow-beam, grouped, or even of different colours to which the 
eye has different sensitivity. Great caution must be exercised in the use of such lights. 

The estimation of the visual range of lights can produce reliable estimates of visibility at night only 
when lights and their background are carefully chosen; when the viewing conditions of the 
observer are carefully controlled; and when considerable time can be devoted to the observation 
to ensure that the observer’s eyes are fully accommodated to the viewing conditions. Results from 
the First WMO Intercomparison of Visibility Measurements (WMO, 1990) show that, during the 
hours of darkness, the observer’s estimates of visibility were about 30 % higher than instrumental 
measurements of MOR. The interquartile range of differences between the observer and the 
instruments was only slightly greater than that found during daylight (about 35 % to 40 % of the 
measured MOR). 

9.2.6 Usage of cameras 

Camera systems are sometimes used as an aid for an observer in order to assess the visibility for 
an area that is blocked from view by buildings or to make visibility observations for a remote 
location. Automated determination of the presence of fog and the estimation of visibility from 
camera images is under development. This is not surprising given that the availability and quality 
of (web)cameras has increased, the costs of these systems decreased and the images can easily 
be made available on internet. Furthermore, image processing techniques are evolving and are 
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now readily available. Various techniques have been implemented such as determining whether 
objects at known distances are visible by evaluating the presence of edges or contrast reduction. 
Other techniques use statistical parameters of an image such as gradients or Fourier analysis and 
relate these to visibility, or use the results of image enhancement methods such as dehazing. 
These techniques can be applied to either individual images, or two images of the same scene 
obtained with two cameras at different distances, or one image relative to a (set of) reference 
image(s) under specific atmospheric conditions. Often the techniques are limited to daytime and 
implementation needs to be tuned to the images/scenes for a specific site (see for example, WMO, 
2016).  

9.3 INSTRUMENTAL MEASUREMENT OF THE METEOROLOGICAL OPTICAL RANGE 

9.3.1 General 

The adoption of certain assumptions allows the conversion of instrumental measurements into 
MOR. It is not always advantageous to use an instrument for daytime measurements if a number 
of suitable visibility objects can be used for direct observations. However, a visibility-measuring 
instrument is often useful for night observations or when no visibility objects are available, or for 
automatic observing systems. Instruments for the measurement of MOR may be classified into 
one of the following two categories: 

(a) Those measuring the extinction coefficient or transmission factor of a horizontal cylinder of 
air: Attenuation of the light is due to both scattering and absorption by particles in the air 
along the path of the light beam; 

(b) Those measuring the intensity of light scattered in specific directions by a small volume of air 
from which the scatter coefficient is derived: In natural fog, absorption is often negligible and 
the scatter coefficient may be considered as being the same as the extinction coefficient.  

Both of the above categories include instruments using a light source and photodetector to detect 
the scattered and attenuated light beam. 

The main characteristics of these two categories of MOR-measuring instruments are described 
below. 

9.3.2 Instruments measuring the extinction coefficient 

Telephotometric instruments 

A number of telephotometers have been designed for daytime measurement of the extinction 
coefficient by comparing the apparent luminance of a distant object with that of the sky 
background, but they are not normally used for routine measurements since, as stated above, it is 
preferable to use direct visual observations. These instruments may, however, be useful for 
extrapolating MOR beyond the most distant object. 

Visual extinction meters 

A very simple instrument for use with a distant light at night takes the form of a graduated neutral 
filter, which reduces the light in a known proportion and can be adjusted until the light is only just 
visible. The meter reading gives a measure of the transparency of the air between the light and 
the observer, and, from this, the extinction coefficient can be calculated. The overall accuracy 
depends mainly on variations in the sensitivity of the eye and on fluctuations in the radiant 
intensity of the light source. The error increases in proportion to MOR. 

The advantage of this instrument is that it enables MOR values over a range from 100 m to 5 km 
to be measured with reasonable accuracy, using only three well-spaced lights, whereas without it 
a more elaborate series of lights would be essential if the same degree of accuracy were to be 
achieved. However, the method of using such an instrument (determining the point at which a 
light appears or disappears) considerably affects the accuracy and homogeneity of the 
measurements. 
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Transmissometers 

The use of a transmissometer is the method most commonly used for measuring the mean 
extinction coefficient in a horizontal cylinder of air between a transmitter, which provides a 
modulated flux light source of constant mean power, and a receiver incorporating a photodetector 
(generally a photodiode at the focal point of a parabolic mirror or a lens). The most frequently 
used light source is a halogen lamp or xenon pulse discharge tube. Modulation of the light source 
prevents disturbance from sunlight. The transmission factor is determined from the photodetector 
output and this allows the extinction coefficient and the MOR to be calculated. 

Since transmissometer estimates of MOR are based on the loss of light from a collimated beam, 
which depends on scatter and absorption, they are closely related to the definition of MOR. A 
good, well-maintained transmissometer working within its range of highest accuracy provides a 
very good approximation to the true MOR. 

There are two types of transmissometer: 

(a) Those with a transmitter and a receiver in different units and at a known distance from each 
other, as illustrated in Figure 9.2; 

(b) Those with a transmitter and a receiver in the same unit, with the emitted light being 
reflected by a remote mirror or retroreflector at a known distance which is half the baseline 
(since the light beam travels to the reflector and back), as illustrated in Figure 9.3. 

ELEMENT 5: Picture inline fixed size NO space 

Element Image: 8_I_9-2_en.eps 

END ELEMENT 

Figure 9.2. Double-ended transmissometer 

ELEMENT 6: Picture inline fix size 

Element Image: 8_I_9-3_en.eps 

END ELEMENT 

Figure 9.3. Single-ended transmissometer 

The distance covered by the light beam between the transmitter and the receiver is commonly 
referred to as the baseline and may range from a few metres to 150 m (or even 300 m) 
depending on the range of MOR values to be measured and the applications for which these 
measurements are to be used. 

As seen in the expression for MOR in equation 9.7, the relation: 

    ln 0.05 lnP a T   (9.14) 

where a is the transmissometer baseline, is the basic formula for transmissometer measurements. 
Its validity depends on the assumptions that the application of the Koschmieder and Bouguer-
Lambert laws is acceptable and that the extinction coefficient along the transmissometer baseline 
is the same as that in the path between an observer and an object at MOR.  

If the measurements are to remain acceptable over a long period, the luminous flux must remain 
constant during this same period. When halogen light is used, the problem of lamp filament 
ageing is less critical and the flux remains more constant. However, some transmissometers use 
feedback systems (by sensing and measuring a small portion of the emitted flux) giving greater 
homogeneity of the luminous flux with time or compensation for any change. 
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As will be seen in the section dealing with the accuracy of MOR measurements, the value adopted 
for the transmissometer baseline determines the MOR measurement range. It is generally 
accepted that this range is between about 1 and 25 times the baseline length. Modern opto-
electronics, however, may provide more accurate results with an extended range (see 9.3.6 and 
WMO, 1992b). 

A further refinement of the transmissometer measurement principle is to use two receivers or 
retroreflectors at different distances to extend both the lower limit (short baseline) and the upper 
limit (long baseline) of the MOR measurement range. These instruments are referred to as “double 
baseline” instruments. 

Many state-of-the-art transmissometers use LEDs as light sources. It is generally recommended 
that polychromatic light in the visible spectrum be used to obtain a representative extinction 
coefficient. 

Visibility lidars 

The lidar (light detection and ranging) technique as described for the laser ceilometer in Volume I, 
Chapter 15, may be used to obtain visibility when the beam is directed horizontally. The range-
resolved profile of the backscattered signal S depends on the output signal S0, the distance x, the 
backscatter coefficient β, and transmission factor T, such that: 

     2 2
0 1 whereS x S x x T T x dx     :                             (9.15) 

Under the condition of horizontal homogeneity of the atmosphere, β and σ are constant and the 
extinction coefficient σ is determined from only two points of the profile: 

   2
0ln ln 2S x x S x  :  (9.16) 

In an inhomogeneous atmosphere the range-dependent quantities of β(x) and σ(x) may be 
separated with the Klett Algorithm (Klett, 1985). 

As MOR approaches 2 000 m, the accuracy of the lidar method becomes poor. 

More information on the requirements for performing visual-range lidar measurements to 
determine the direction-dependent meteorological optical range can be found in the International 
Organization for Standardization standard, ISO 28902-1:2012 (ISO, 2012). 

9.3.3 Instruments estimating the scatter coefficient 

The attenuation of light in the atmosphere is due to both scattering and absorption. The presence 
of pollutants in the vicinity of industrial zones, ice crystals (freezing fog) or dust may make the 
absorption term significant. However, in general, the absorption factor is negligible and the scatter 
phenomena due to reflection, refraction, or diffraction on water droplets constitute the main factor 
reducing visibility. The extinction coefficient may then be considered as equal to the scatter 
coefficient, and an instrument for determining the latter can, therefore, be used to estimate MOR. 

Measurements are most conveniently taken by concentrating a beam of light on a small volume of 
air and by determining, through photometric means, the proportion of light scattered in a 
sufficiently large solid angle in directions where scattering provides the best estimate of the 
scatter coefficient in all conditions. Provided that it is completely screened from interference from 
other sources of light, or that the light source is modulated, an instrument of this type can be 
used during both the day and night. The scatter coefficient b is a function that may be written in the 
following form: 

    
0

2
sin

v

b I d




  


   (9.17) 
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where Φv is the flux entering the volume of air V and I(𝜙) is the intensity of the light scattered in 
direction 𝜙 with respect to the incident beam. 

Note that the accurate determination of b requires the measurement and integration of light 
scattered out of the beam over all angles. Practical instruments measure the scattered light over a 
limited angle and rely on a high correlation between the limited integral and the full integral in all 
conditions. 

Three measurement methods are used in these instruments: backscatter, forward scatter, and 
scatter integrated over a wide angle. 

(a) Backscatter: In these instruments (Figure 9.4), a light beam is concentrated on a small 
volume of air in front of the transmitter, the receiver being located in the same housing as 
the light source where it receives the light backscattered by the volume of air sampled. 
Several researchers have tried to find a relationship between visibility and the coefficient of 
backscatter, but it is generally accepted that that correlation is not satisfactory. 

ELEMENT 7: Floating object (Top) 

ELEMENT 8: Picture inline fixed size NO space 

Element Image: 8_I_9-4_en.eps 

END ELEMENT 

Figure 9.4. Visibility meter measuring backscatter 

END ELEMENT 

 (b) Forward scatter: The amount of light scattered by small particles (aerosols, small droplets) is 
angular dependent. Moreover, the angular dependency is determined by the chemical 
composition (e.g. salt concentration), type of nucleus (sand, dust) and size and shape of the 
particles. As a consequence, a scattering angle should be chosen so that the angular 
dependence is minimal and representative for the scatter coefficient. Several authors have 
shown that the best angle is between 20° and 50° (Kneizys et al., 1983; Jia and Lü, 2014; 
Barteneva, 1960; Van de Hulst, 1957). The instruments, therefore, comprise a transmitter 
and a receiver, the angle between the beams being 20° to 50°. Another arrangement 
involves placing either a single diaphragm half-way between a transmitter and a receiver or 
two diaphragms each a short distance from either a transmitter or a receiver. Figure 9.5 
illustrates the two configurations that are used. Instruments determining MOR based on the 
forward scatter principle are generally called forward scatter instruments or forward scatter 
meters. 

ELEMENT 9: Floating object (Top) 

ELEMENT 10: Picture inline fixed size NO space 

Element Image: 8_I_9-5_en.eps 

END ELEMENT 

Figure 9.5. Two configurations of visibility meters measuring forward scatter 

END ELEMENT 

 (c) Scatter over a wide angle: Such an instrument, illustrated in Figure 9.6, which is usually 
known as an integrating nephelometer, is based on the principle of measuring scatter over as 
wide an angle as possible, ideally 0° to 180°, but in practice about 0° to 120°. The receiver is 
positioned perpendicularly to the axis of the light source which provides light over a wide 
angle. Although, in theory, such an instrument should give a better estimate of the scatter 
coefficient than an instrument measuring over a small range of scattering angles, in practice 
it is more difficult to prevent the presence of the instrument from modifying the extinction 
coefficient in the air sampled. Integrating nephelometers are not widely used for measuring 
MOR, but this type of instrument is often used for measuring pollutants. 
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In all the above instruments, as for most transmissometers, the receivers comprise photodetector 
cells or photodiodes. The light used is pulsed (for example, high-intensity discharge into xenon). 

These types of instruments require only limited space (1 to 2 m in general). They are, therefore, 
useful when no visibility objects or light sources are available (on board ships, by roadsides, and 
so forth). Since the measurement relates only to a very small volume of air, the 
representativeness of measurements for the general state of the atmosphere at the site may be 
open to question. However, this representativeness can be improved by averaging a number of 
samples or measurements. In addition, smoothing of the results is sometimes achieved by 
eliminating extreme values. 

The use of these types of instruments has often been limited to specific applications (for example, 
highway visibility measurements, or to determine whether fog is present) or when less precise 
MOR measurements are adequate. These instruments are now being used in increasing numbers 
in automatic meteorological observation systems because of their ability to measure MOR over a 
wide range and their relatively low susceptibility to contamination of optical surfaces compared 
with transmissometers. 

ELEMENT 11: Picture inline fixed size NO space 

Element Image: 8_I_9-6_en.eps 

END ELEMENT 

Figure 9.6. Visibility meter measuring scattered light over a wide angle 

9.3.4 Instrument exposure and siting 

Measuring instruments should be located in positions which ensure that the measurements are 
representative for the intended purpose. Thus, for general synoptic purposes, the instruments 
should be installed at locations free from local atmospheric pollution, for example, smoke, 
industrial pollution, dusty roads. 

The volume of air in which the extinction coefficient or scatter coefficient is measured should 
normally be at the eye level of an observer, about 1.5 m above the ground. 

It should be borne in mind that transmissometers and forward scatter meters should be installed 
in such a way that the sun is not in the optical field of view of the receiver at any time of the day. 
This is normally achieved either by mounting with a north-south optical axis (to ±45°) with the 
receiver horizontal and pointing away from the equator for latitudes up to 50°, or by using a 
system of screens or baffles. Forward scatter meters should also be aligned such that reflecting 
objects in the optical field of view of the receiver are avoided. 

For aeronautical purposes, measurements are to be representative of conditions at the aerodrome 
or along the runway. These conditions, which relate more specifically to aerodrome operations, 
are described in Volume III, Chapter 2. 

The instruments should be installed in accordance with the directions given by the manufacturers. 
Particular attention should be paid to the correct alignment of transmissometer transmitters and 
receivers and to the correct adjustment of the light beam. The poles on which the 
transmitter/receivers are mounted should be mechanically firm (while remaining frangible when 
installed at aerodromes) to avoid any misalignment due to ground movement during freezing and, 
particularly, during thawing. In addition, the mountings must not distort under the thermal 
stresses to which they are exposed. Some modern transmissometers can automatically adjust 
their alignment to compensate for this. 

9.3.5 Calibration and maintenance 

In order to obtain satisfactory and reliable observations, instruments for the measurement of MOR 
should be operated and maintained under the conditions prescribed by the manufacturers, and 
should be kept continuously in good working order. Regular checks and calibration in accordance 
with the manufacturer’s recommendations should ensure optimum performance. 
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9.3.5.1 Maintenance 

For most transmissometers their optical surfaces must be cleaned regularly therefore frequent 
servicing must be planned particularly at aerodromes. The instruments should be cleaned during 
and/or after major atmospheric disturbances, since rain or violent showers together with strong 
wind may cover the optical systems with a large number of water droplets and solid particles 
resulting in major MOR measurement errors. The same is true for snowfall, which could block the 
optical systems. Heating systems are often placed at the front of the optical systems and in the 
hood to improve instrument performance under such conditions. Air-blowing systems are 
sometimes used to reduce the above problems and the need for frequent cleaning. However, it 
must be pointed out that these blowing and heating systems may generate air currents warmer 
than the surrounding air and may adversely affect the measurement of the extinction coefficient of 
the air mass. In arid zones, sandstorms or blowing sand may block the optical system and even 
damage it. Modern transmissometers and forward scatter meters monitor the contamination on 
the optical lens or window and produce warnings and errors when the contamination reaches a 
threshold. Some instruments make a correction for the window contamination. 

The MOR measurement of a forward scatter meter is affected by cobwebs or even individual spider 
silk in the measurement volume. Flying insects, which typically swarm around dusk in calm 
weather conditions can contribute to the scattered signal. Both cause the forward scatter meter to 
report artificially low MOR values. The reduction of the MOR of a forward scatter meter by cob-
webs and flying insects can be very large, whereas these hardly affect the MOR obtained by a 
transmissometer. Some forward scatter meters filter the raw signal for spikes induced by flying 
insects (WMO, 2012). However, care must be taken that spikes resulting from particles or droplets 
are not filtered out as this filtering leads to higher MOR values which may lead to safety issues. 

The main sources of error and recommended actions are summarised in Table 9.3 for 
transmissometers and in Table 9.4 for forward scatter meters. 

Table 9.3. Transmissometers: Sources of Error and Actions 

Error Source Action 

Atmospheric pollutants deposited on optical 

surfaces  

 

1. Instrument self-diagnostic features: 

contamination measurement and contamination 

compensation algorithms in instrument 

software. 

2. Preventative maintenance: regular cleaning 

in accordance with manufacturer’s instructions. 

3. Reactive maintenance: cleaning at need. 

Instability of system electronics Regular calibration check, using a graduated 

set of attenuation filters under stable, high 

visibility conditions. Adjust instrument settings, 

if required, in accordance with manufacturer's 

instructions. 

Snow or ice build-up on surfaces near to the 

optical measurement path 

Preventative measure: install instrument head 

heaters and hood heaters. 

Aging of transmitter light source or incorrect 

centring of lamps 

1. Instrument self-diagnostic features: lamp 

intensity measurement and aging warning 

messages 

2. Preventative/reactive maintenance: 

replacement of transmitter light source, if 

required. 

3. Use automatic alignment assistant, where 

available. 

Insufficient rigidity and stability of transmitter 

and receiver mounts and effects of freezing or 

thawing of the ground and thermal stress 

Regular calibration check, using a graduated 

set of attenuation filters under stable, high 

visibility conditions. Adjust instrument settings, 

if required, in accordance with manufacturer’s 

instructions. 



 CHAPTER 9. MEASUREMENT OF VISIBILITY 17 

 

 

 
C

H
A

P
T

E
R

 1
. G

E
N

E
R

A
L

 
1

7
 

Remote transmission of the extinction 

coefficient as a low current signal may be 

subject to interference from electromagnetic 

fields. (a particular problem at aerodromes) 

Digital signal formats are less prone to 

interference than analogue signals. 

Calibration error due to calibration/adjustment 

being carried out when visibility is low, or 

unstable atmospheric conditions that affect the 

extinction coefficient 

Calibration and adjustment should be carried 

out in accordance with manufacturer’s 

instructions.  

Incorrect alignment of transmitters and 

receivers 

Use automatic alignment assistant, where 

available. 

Disturbance when sun is near horizon, or due 

to reflections from adjacent surfaces 

Installation and orientation should be carried 

out in accordance with manufacturer’s 

instructions. 

 

Table 9.4. Forward Scatter meters: Sources of Error and Actions 

Error Source Action 

Atmospheric pollutants deposited on optical 

surfaces and/or incorrect compensation for this 

contamination 

 

1. Instrument self-diagnostic features: 

contamination measurement and contamination 

compensation algorithms in instrument 

software. 

2. Design features: look-down geometry and 

hoods over instrument heads provide better 

protection to optics and enable longer intervals 

between maintenance.  

3. Preventative maintenance: regular cleaning 

in accordance with manufacturer’s instructions. 

4. Reactive maintenance: cleaning at need. 

Instability of system electronics Regular calibration check, using scatter plates 

(also known as SCU) that emulate defined fog 

conditions. Adjust instrument settings, if 

required, in accordance with manufacturer’s 

instructions. 

Snow or ice build-up on surfaces near to the 

optical measurement path 

Preventative measure: install instrument head 

heaters and hood heaters. 

Aging of transmitter light source 1.Instrument self-diagnostic features: light 

source intensity measurement and aging 

warning messages 

2. Preventative/reactive maintenance: 

replacement of transmitter light source, if 

required. 

Light source not at visible wavelengths Design feature taken into account during 

verification of calibration against 

transmissometer. 

Atmospheric conditions (for example, rain, 

snow, ice crystals, sand, local atmospheric 

pollutants) giving a scatter coefficient that 

differs from the extinction coefficient 

1. Design feature: optimised scattering angle 

2. Discrimination and correction for 

atmospheric conditions 

Extra absorption by sand, dust and smoke that 

affects visibility and its measurement 

Discrimination and correction for absorption or 

application of calibration factor obtained for 

these conditions.  

Calibration error due to calibration/adjustment 

being carried out when visibility is low, or 

unstable atmospheric conditions that affect the 

extinction coefficient 

Calibration and adjustment should be carried 

out in accordance with manufacturer’s 

instructions.  

Incorrect procedures for 

calibration/adjustment, or use of incorrect or 

damaged scatter plates 

Calibration and adjustment should be carried 

out in accordance with manufacturer’s 

instructions.  
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Disturbance when sun is near horizon, or due 

to reflections from adjacent surfaces 

Installation and orientation should be carried 

out in accordance with manufacturer’s 

instructions. 

Disturbance by cob-webs, or even individual 

spider silk, and flying insects in the 

measurement volume 

1. Preventative maintenance: regular cleaning 

in accordance with manufacturer’s instructions. 

2. Reactive maintenance: cleaning at need. 

3. Discrimination and correction for spikes in 

scattered signal due to flying insects. 

 

9.3.5.2 Calibration 

The calibration should be verified regularly (this is normally performed in very good visibility i.e. 
over 10 to 15 km) and the instrument should be calibrated and adjusted if necessary. Atmospheric 
conditions resulting in erroneous calibration must be avoided. When, for example, there are strong 
updraughts, or after heavy rain, considerable variations in the extinction coefficient are 
encountered in the layer of air close to the ground; if several transmissometers are in use on the 
site (in the case of aerodromes), dispersion is observed in their measurements. Calibration should 
not be attempted under such conditions. 

A transmissometer can be calibrated by direct comparison with the distance at which specified 
objects and lights of known intensity can be seen by an observer. The observation should be as 
close as possible to MOR, as it is MOR which is used for conversion to obtain transmittance. The 
calibration can also be performed by directly using traceable optical neutral density filters.  

Calibration of instruments based on measurement of the scattering coefficient also known as 
scatter meters cannot be carried out directly. The calibration of a forward-scatter meter has to be 
traceable and verifiable to a transmissometer standard, the accuracy of which has been verified 
over the intended operational range (ICAO, 2016). The calibration of a scatter meter involves the 
insertion of optical plates (often called Scatter meter Calibration Units or SCU) into the 
measurement volume, at a fixed position, which simulates a defined value of MOR. These SCU are 
specific and provided by the instrument manufacturer. Generally only SCU corresponding to a low 
MOR value are provided that in combination with blocking the receiver (high MOR value) can be 
used to perform a 2-point calibration. 

SCU are susceptible to changes over a period of use due to contamination and ageing and should 
be initially and then regularly checked and calibrated. This should be done by returning the plates 
to a suitable testing facility equipped with adequate visibility references and a traceable calibration 
chain. For some instruments, the manufacturer may offer an equivalent calibration service for SCU 
supplied by themselves. 

According to the ICAO (2005), part 9.4.3 on references for visibility: an “ideal” reference is a set 
of instruments of at least two transmissometers (ideally using two different baselines) and two 
forward scatter meters exhibiting median values with a bias less than 5 per cent, when compared 
to the transmissometers. 

At the visibility calibration facility, the SCU should be checked on a known reference forward 
scatter meter, and if necessary recalibrated with a new coefficient. 

There, the known reference forward scatter meters are themselves regularly calibrated with a 
reference SCU and they are systematically checked against the reference transmissometers during 
low visibility episodes. In case of a bias over a defined threshold (5 % for ICAO), the reference 
SCU is recalibrated with a new coefficient. The reference transmissometers must also be regularly 
calibrated. This can be done against human observations or by using a set of optical neutral 
density filters. The traceability of the MOR measurements to a known standard should be 
established. A visibility reference and calibration chain is described in for example WMO (2006). 
The resulting chain of calibration is described on Figure 9.7. 
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Figure 9.7. Visibility calibration chain for scatter meters  

The comparison of forward scatter meters and transmissometers should be carefully conducted 
with validated data. Comparison of scatter meters and transmissometers should be carried out 
during periods of low visibility, as a SCU generally simulates these conditions. Additionally, the 
accuracy of the reference transmissometers is very good at lower visibility and low visibility values 
are critical for aviation purposes. 

Data from fog only episodes should be kept and episodes including precipitations (rain, snow) 
must be excluded. The reason was noted in 9.1.4: the relationship between the transmission 
factor and MOR is valid for fog droplets, but when visibility is reduced by other hydrometeors 
(such as rain or snow) or lithometeors (such as blowing sand), MOR values should be treated with 
more care. 

Finally as explained in ICAO (2005): When comparing instruments, it is necessary to check the 
homogeneity of fog. Nonhomogeneous fogs may strongly disturb the MOR distribution ratio of an 
instrument. Therefore, such periods must be identified and excluded from the data analysis. 

Note that higher visibility values may also be considered in the comparison of forward scatter 
meters and transmissometers as long as the transmissometer can serve as a reference. This 
extension of the MOR range also serves as a check of the linearity and the 2-point calibration of 
the forward scatter meters over a larger visibility range.   

 

9.3.6 Accuracy estimates for the measurement of meteorological optical range 

General 

All practical operational instruments for the measurement of MOR sample a relatively small region 
of the atmosphere compared with that scanned by a human observer. Instruments can provide an 
accurate measurement of MOR only when the volume of air that they sample is representative of 
the atmosphere around the point of observation out to a radius equal to MOR. It is easy to 
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imagine a situation, with patchy fog or a local rain or snow storm, in which the instrument reading 
is misleading. However, experience has shown that such situations are not frequent and that the 
continuous monitoring of MOR using an instrument will often lead to the detection of changes in 
MOR before they are recognized by an unaided observer. Nevertheless, instrumental 
measurements of MOR must be interpreted with caution. 

Another factor that must be taken into account when discussing representativeness of 
measurements is the homogeneity of the atmosphere itself. At all MOR values, the extinction 
coefficient of a small volume of the atmosphere normally fluctuates rapidly and irregularly, and 
individual measurements of MOR from forward scatter meters and short baseline 
transmissometers, which have no in-built smoothing or averaging system, show considerable 
dispersion. It is, therefore, necessary to take many samples and to smooth or average them to 
obtain a representative value of MOR. The analysis of the results from the First WMO 
Intercomparison of Visibility Measurements (WMO, 1990) indicates that, for most instruments, no 
benefit is gained by averaging over more than 1 min, but for the “noisiest” instruments an 
averaging time of 2 min is preferable. 

Accuracy of transmissometers 

The principal sources of error in transmissometer measurements are listed in Table 9.3 in 9.3.5.1.  

The use of a transmissometer that has been properly calibrated and well maintained should give 
good representative MOR measurements if the extinction coefficient in the optical path of the 
instrument is representative of the extinction coefficient everywhere within the MOR. However, a 
transmissometer has only a limited range over which it can provide accurate measurements of 
MOR. A relative error curve for MOR may be plotted by differentiating the basic transmissometer 
formula (see equation 9.7). Figure 9.8 shows how the relative error varies with transmission, 
assuming that the measurement accuracy of the transmission factor T is 1 %. 

ELEMENT 12: Floating object (Automatic) 

ELEMENT 13: Picture inline fix size 

Element Image: 8_I_9-7_en.eps 

END ELEMENT 

Figure 9.8. Error in measurements of meteorological optical range as a function of 
a 1 % error in transmittance 

END ELEMENT 

This 1 % value of transmission error, which may be considered as correct for many older 
instruments, does not include instrument drift, dirt on optical components, or the scatter of 
measurements due to the phenomenon itself. If the accuracy drops to around 2 % to 3 % (taking 
the other factors into account), the relative error values given on the vertical axis of the graph 
must be multiplied by the same factor of 2 or 3. Note also that the relative MOR measurement 
error increases exponentially at each end of the curve, thereby setting both upper and lower limits 
to the MOR measurement range. The example shown by the curve indicates the limit of the 
measuring range if an error of 5 %, 10 % or 20 % is accepted at each end of the range measured, 
with a baseline of 75 m. It may also be deduced that, for MOR measurements between the limits 
of 1.25 and 10.7 times the baseline length, the relative MOR error should be low and of the order 
of 5 %, assuming that the error of T is 1 %. The relative error of MOR exceeds 10 % when MOR is 
less than 0.87 times the baseline length or more than 27 times this length. When the 
measurement range is extended further, the error increases rapidly and becomes unacceptable. 
However, since contemporary transmissometers produce transmission errors that are clearly lower 
than the exemplary 1 %, the usable measurement range may be extended accordingly. 

Already results from the First WMO Intercomparison of Visibility Measurements (WMO, 1990) show 
that the best transmissometers, when properly calibrated and maintained, can provide 
measurements of MOR with a standard error of about 10 % when MOR is up to 60 times their 
baseline. 



 CHAPTER 9. MEASUREMENT OF VISIBILITY 21 

 

 

 
C

H
A

P
T

E
R

 1
. G

E
N

E
R

A
L

 
2

1
 

Accuracy of forward scatter meters 

The principal sources of error in measurements of MOR taken with forward scatter meters are 
listed in Table 9.4 in 9.3.5.1. 

Results from the First WMO Intercomparison of Visibility Measurements (WMO, 1990) show that 
forward scatter meters are generally less accurate than transmissometers at low values of MOR, 
and forward scatter meters show greater variability in their readings. There was also evidence that 
forward scatter meters, as a class, were more affected by precipitation than transmissometers. 
However, the best forward scatter meters showed little or no susceptibility to precipitation and 
provided estimates of MOR with standard deviation of about 10 % over a range of MOR from 
about 100 m to 50 km. Almost all the forward scatter meters in the intercomparison exhibited 
significant systematic error over part of their measurement range. Forward scatter meters showed 
very low susceptibility to contamination of their optical systems. 

An overview of the differences between forward scatter meters and transmissometers is given by 
WMO (1992b). 

Accuracy of telephotometers and visual extinction meters 

Visual measurements based on the extinction coefficient are difficult to take. The main source of 
error is the variability and uncertainty of the performance of the human eye. These errors have 
been described in the sections dealing with the methods of visual estimation of MOR. 
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